BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

PERFORMANCE ANALYSIS OF PROGRAMS BASED
ON PIN FRAMEWORK

ANALYZA VYKONU PROGRAMU ZALOZENA NA FRAMEWORKU PIN

BACHELOR'’S THESIS
BAKALARSKA PRACE

AUTHOR PETER MOCARY
AUTOR PRACE
SUPERVISOR Ing. JIRi PAVELA

VEDOUCI PRACE

BRNO 2022

Brno University of Technology
Faculty of Information Technology

Department of Intelligent Systems (DITS) Academic year 2021/2022
Bachelor's Thesis Specification |[[[[[Illlllil
23847

Student: Mocary Peter
Programme: Information Technology

Title: Performance Analysis of Programs Based on PIN Framework
Category: Software analysis and testing
Assignment:

1. Get acquainted with the Perun project (performance version system) and the field of
software performance analysis.

2. Study available instrumentation frameworks and their application for performance analysis,
in particular, for collecting performance data. Focus mainly on the PIN framework.

3. Design and implement a Perun module that collects performance metrics of programs using
the PIN framework. Focus on collecting additional data (besides runtime of functions), such
as loop metrics or parameter values of invoked functions.

4. Design and implement suitable visualization of the resulting collected data (e.g., waterfall
graphs).

5. Demonstrate the solution on at least one non-trivial use-case.

Recommended literature:
e Perun project: https://github.com/tfiedor/perun
* PIN Manual: https://software.intel.com/sites/landingpage/pintool/docs/81205/Pin/html/
* Gregg, B. (2020). Systems Performance, (2nd ed.). Pearson. ISBN: 9780136821694.
Requirements for the first semester:
e |tems 1 and 2 of the assignment.
Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/

Supervisor: Pavela Jifi, Ing.

Head of Department: ~ Hanacek Petr, doc. Dr. Ing.
Beginning of work: November 1, 2021
Submission deadline: May 11, 2022

Approval date: November 3, 2021

Bachelor's Thesis Specification/23847/2021/xmocar00 Page 1/1

Abstract

The goal of this thesis is to extend the Performance Version System — Perun by implementing
a new Tracer engine leveraging PIN instrumentation framework. This extension implements
basic Tracer functionality and, in addition to that, a recording of function arguments’ val-
ues as well as basic block run-times. The additional data, along with the visualizations
introduced in this thesis, provide the necessary context that simplifies the detection of per-
formance degradation. Besides the PIN framework, the new Tracer engine implements an
analysis of debug information in DWARF format (using the python pyelftools library) to
gather details about function arguments before the data collection process. The resulting
engine was tested on multiple implementations of sorting algorithms and successfully de-
tected the most time consuming functions along with the information about the effect of
its parameter value on the functions complexity. Testing the PIN engine on a larger—scale
project revealed that, in comparsion to other Tracer engine implementations, the engine
performs better or comparably, and produces the correct output.

Abstrakt

Cielom tejto prace je rozsirit vykonnostny verzovaci system — Perun implementaciou nového
Tracer engine vyuzivajiceho instrumentacny nastroj PIN. Toto rozsirenie implementuje zak-
ladné funkcie Tracer modulu a zaroveii zber argumentov funkeif spolu so zberom dizky behu
zékladnych blokov programu. Tieto nové idaje spolu s vizualizdciami vytvorenymi v tejto
préci poskytuji potrebny kontext, ktory zjednodusuje odhalenie zhorsenia vykonu. Okrem
nastroja PIN vyuziva Tracer engine python kniznicu pyelftools na analyzu ladiacich infor-
macii vo formate DWARF pre zistenie podrobnosti o argumentoch funkcii pred procesom
zberu udajov. Vysledny engine bol testovany na viacerych implementéciach triediacich al-
goritmov a uspesne detekoval ¢asovo najnarocnejsie funkcie spolu s informéaciami o zvySenej
zlozitosti suvisiacej s jej argumentom. Testovanie na projekte véacsieho rozsahu odhalilo, ze
v porovnani s ostatnymi implementaciami Tracer engine, tento novy engine pracuje lepsie
alebo porovnatelne a produkuje spravne vystupy.

Keywords

performance testing, performance bottlenecks, Perun, dynamic instrumentation, PIN

Kltucové slova

vykonnostné testovanie, vykonnostné tzke miesta, Perun, dynamicka instrumentacia, PIN

Reference

MOCARY, Peter. Performance Analysis of Programs Based on PIN Framework. Brno,
2022. Bachelor’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Jit{ Pavela

Rozsireny abstrakt

Hlavnym cielom tejto prace je rozsirenie stavajucej implementacie a funkcionality vykon-
nostného verzovacieho systému— Perun. Konkrétne sa zaoberd jednym zo zberacov vykon-
nostnych dat, ktory sa nazyva Tracer. Tracer ma za tilohu meranie dizky behu jednotlivych
funkcii zvoleného C/C++ programu pri¢om umoziiuje realizaciu viacerych oddelenych im-
plementacii svojej funkcionality, takzvanych enginov. Implementacia nového enginu pomo-
cou instrumenta¢ného nastroja PIN je hlavnou castou tejto prace, avsak, okrem zaklad-
nej funkcionality, toto rozsirenie nastroja Perun priddva moznost detailnejsieho zberu dat.
Podporuje zber obmedzenej mnoziny argumentov funkcii a taktiez dizku behu jednotlivych
zakladnych blokov kédu zvoleného programu. Tracer okrem zberu dat vykonava spracovanie
zozbieranych dat do jednotného formatu— vykonnostného profilu, ktory je dalej pouzivany
na dodatoc¢ni analyzu alebo vizualne spracovanie nazbieranych dat vramci nastroja Perun.
Tato praca sa takisto venuje implementacii vizualizacie novych typov nazbieranych dat,
ktoré interpretuju vykonnostny profil uzivatelovi za cielom jednoduchsej manuélnej analyzi
vzniknutého vykonnostného profilu.

Na implementaciu nového Tracer enginu bol pouzity inStrumentacny nastroj PIN, ktory
podporuje dynamickd bindrnu analyzu a zaroven nie je do znac¢nej miery zavisly od jadra
operacného systému Linux ¢o umoznuje jeho spustenie bez administratorskych privilégii.
Predoslé implementacie Tracer enginov vyuzivaju technolégie eBPF a SystemTap, ktoré
tieto prava vyzaduji. Vyuzitie nastroja PIN vyzaduje vytvorenie tzv. pintool, ktory defin-
uje priebeh instrumentacie. Pintool je mozné vytvorit v jazyku C alebo C++ pomocou
APT poskytnutej nastrojom PIN. V ramci Tracer enginu sa vyuzivaju rézne pintooly, ¢o
viedlo k integracii dynamickej generacie pintoolu pomocou Jinja2 sablon, vdaka ktorym si
uzivatel dokaze zvolif vhodnu konfiguraciu instrumentécie a v koneénom doésledku vystupné
data zozbierané tymto enginom. Zber hodndt argumentov jednotlivych funkcii vyzaduje,
aby engine pri generécii pintoolu poznal nazvy funkcii a pozicie spolu s typmi parametrov
tychto funkcii, ktorych argumenty je nutné zozbierat. V pripade, Ze si uzivatel zvoli zber
argumentov funkcii, engine vykona analyzu ladiacich infromécii pritomnych v poskytnu-
tom binarnom subore. Ladiace informacie vo formate DWARF engine analyzuje pomo-
cou python kniznice pyelftools a generuje tabulku funkcii, ktorych argumenty maji pod-
porovany typ vhodny pre analyzu. Tieto informacie st dalej vyuzité vo vizualizacii vztahu
hodnoty argumentu a dizky doby behu funkcie v jednej z implementovanych vizualiza-
cii. Nové vizualizacie vytvorené vramci tejto prace vyuzivaju python kniznice ako Pandas,
Bokeh alebo spojenie Seaborn s Matplotlib.

Experimentalne ohodnotenie vytvoreného Tracer enginu bolo vykonané na viacerych trie-
diacich algoritmoch za tUcelom preukdzania spravnosti zozbieranych vysledkov ale aj ich
prinosu pri analyze vykonu programov. Experiment zahfnal spravnu a zaroven nespravnu
implementaciu algoritmu, ¢o Tracer engine spravne rozlisil a vdaka dodatoénym informa-
cidm o argumentoch funkcii dokézal odhalit znacné odchylenie od predpokladanej zlozitosti
algoritmu. Naviac oznacil spravnu funkciu ako najviac ¢asovo naro¢na pricom poukazal
na ¢asovo najnarocnejsie zakladné bloky danej funkcie. Experimendlne bol novy Tracer
engine porovnany s predoslimi implementaciami vyuzivajicimi eBPF a SystemTap. Tento
experiment bol vykonany na projekte vicieho rozsahu, kompresovacom programe CCSDS
a ukazal, Zze engine zalozeny na technolégii PIN je rychlejsi alebo porovnatelny s vykonom
ostatnych enginov a taktiez oznacil ¢asovo najndrocnejsie funkcie rovnako ako ostané enginy.

Performance Analysis of Programs Based on PIN
Framework

Declaration

I hereby declare that this Bachelor’s thesis was prepared as an original work by the author
under the supervision of Ing. Jit{ Pavela. The supplementary information was provided by
Ing. Tomas Fiedor Ph.D. and Ing. Jan Fiedor Ph.D. I have listed all the literary sources,
publications and other sources, which were used during the preparation of this thesis.

Peter Mocary
May 10, 2022

Acknowledgements

I would like to express my special thanks to my supervisors from VeriFIT performance team
Ing. Jiri Pavela and Ing. Tomas Fiedor Ph.D. for their guidance and frequent consultations
providing recommendations and valuable feedback during the course of this Thesis. Fur-
thermore, I would like to thank Ing. Jan Fiedor Ph.D. for providing valuable information
regarding the utilized framework.

Contents

1 Introduction

2 Perun
2.1 Overview
2.2 Architecture
2.3 Tracer Collector e

3 PIN Framework
3.1 Overview e
3.2 Pintools
3.3 JIT and Probe Modes
3.4 Using PIN in Perun’s Tracer Engine

4 Analysis of Requirements
4.1 The Resulting Functionality
4.2 Functional Requirements o oL
4.3 Non-functional Requirements

5 Design and Implementation
5.1 Tracer PIN Engine
5.1.1 Tracer Engine Interface
5.1.2 Pintool and Makefile L.
5.1.3 Transforming PIN Output Into the Perun Profile
5.2 Extending the PIN Engine
5.2.1 Arguments Collection
5.2.2 Basic Block Run-times o o L
5.3 Visualizationso

6 Experimental Evaluation
6.1 Case Study #1: Impact of Increased Granularity
6.2 Case Study #2: Impact of Tracer Engines

7 Conclusion
Bibliography
A Contents of the included storage media

B Basic Block Visualization Examples

17
17
18
19

20
20
20
22
24
25
26
29
31

34
34
37

40

41

44

45

Chapter 1

Introduction

Software testing is an essential part of a development process that provides vital information
about reliability and quality of the final product. Since testing plays such a crucial role
in today’s software development, there are tools and techniques incorporating it into the
development cycle such as continuous integration (CI). CI makes the testing easier and
reduces the time it takes to validate and subsequently release new software updates. Even
though the software testing techniques are commonly used among developers, the main
emphasis is on the software functionality and its performance is often overlooked until
the users start noticing problems—which might often be too late.

Performance testing techniques are commonly used by the developers to detect and fix
performance issues in software. However, performance testing often poses a bigger challenge
than functionality testing, since some performance issues can only be exposed under very
specific conditions. Moreover, such conditions may be extremely difficult, or even borderline
impossible, to meet. Despite the difficulties, performance testing can improve the quality
and user experience of software, e.g., by eliminating all sources of potential slowdowns. The
introduction of automation to the performance testing is crucial, because complex programs
can produce enormous amounts of data that, when managed without automation, might
result in errors. Although the importance of performance testing is undeniable, the variety
and quality of available tools is not sufficient. Thus, the lack of monitoring and integration
tools focused on performance and its evolution during the development could be a reason
for such low interest in performance testing.

The VeriFIT research group developed an open source light weight Performance Version
System — Perun [9, 10], which strives to provide the necessary tooling to make the perfor-
mance testing easier and therefore more utilized by the developers around the world. Perun
archives it by integrating Version Control Systems (VCS) and performance regression test-
ing. By creating and storing profiles for each version of a given program, Perun ensures that
a developer has better feedback regarding the project performance with every change they
make. Performance profiles of the given program are gathered by the Collectors, among
which the Tracer collector has a major role in measuring the run-times of functions. In its
current state, users are able to chose between two different backends (called engines) of the
Tracer collector based on eBPF [12] and SystemTap [17] frameworks.

This thesis focuses on extending the Perun Tracer collector with a new engine based on
the PIN framework while reducing the time spent on the collection of necessary data for

the performance analysis. The PIN framework, compared to the eBPF and SystemTap
frameworks currently used in Perun’s Tracer collector, offers better options namely in the
dynamic binary instrumentation approach, which considerably increases Tracer’s potential.
Moreover, this extension will allow Tracer to gather additional information regarding func-
tion parameters and other code primitives (such as basic block metrics). Such information
will be used to evaluate code performance in a more granular fashion, thus leading to more
accurate analysis results. Furthermore, this thesis also focuses on visualization of the col-
lected data, as proper visualization greatly reduces the time needed to evaluate the analysis
results by the Perun users.

Structure of the thesis. Chapter 2 introduces the Performance Version System — Perun
and its architecture while focusing mainly on the Tracer collector. Chapter 3 describes
the PIN framework, creation of pintools and compares PIN to the frameworks currently
used in the Perun Tracer, highlighting the reasons for this Tracer extension. Chapter 4
covers the requirements of this work and Chapter 5 presents the design and implementation
of the Tracer extension and the visualization of collected data. The experimental evaluation
of the PIN engine, including the new visual representations of the collected data, is located
in chapter 6.

Chapter 2

Perun

This chapter introduces Performance Version System—Perun and argues why Perun is
a suitable tool for performance testing. One of the key parts of this chapter is a de-
scription of Perun’s architecture which sheds light on the internals of Perun, and provides
the necessary knowledge to properly understand its workflow. The next section covering
Tracer collector is essential for this thesis since it describes the common engines interface,
which needs to be utilized to extend Tracer with a new engine based on the PIN framework,
and the data collection process including its strategies as well. The most recent Perun doc-
umentation [10] along with the relevant work [27, 26] is utilized in this chapter to provide
necessary knowledge for the goals of this thesis.

2.1 Overview

The open-source lightweight Performance Version System —Perun (Performance Under con-
trol) was created by the VeriFIT research group to achieve full automation of performance
management. Although still under active development, it already has a lot to offer.

Perun works as a wrapper around a VCS and adds support for automated performance
testing on top of it. Management of the performance profiles for each version of a project,
postprocessing of a created profile and its effective interpretation are other significant fea-
tures of Perun’s tool suite. The automation of a project’s performance analysis allows for
easy regression testing and the fact that every minor version of the project has its perfor-
mance profiles stored as a part of development history makes it possible to detect problems
associated with performance very early on during the project development, without the
need of manual involvement of a user.

Perun is meant to be used by a single developer (or a small team) as a complete solution
for storing, automating and interpreting the performance of a project, as well as by bigger
teams working on more complex projects. Figure 2.1 illustrates the intended use-case of
Perun where each developer keeps his own instance of both versioning and performance
systems, and can share the code changes, as well as the performance data, with other
developers.

Perun offers a number of advantages over manual management of performance, data such
as storing the profiles in a database or directly in a VCS. Since it stores created perfor-

git init —-bare @
—]=
e’ N,
(.git) (.perun)
@ I @ Collectors Perun :
(time, memotry, ...) -
(V) Suite
——] < > [(=1=) @ postprocessing |
v v v v (regression analysis, filters, ...)
— v @ Visualizations
(git) (.perun) (git) _(.perun) (bars, scatter plots, heat maps, ...)
i A i -
Developer 1 Developer 2

Figure 2.1: An illustration of a project development with Perun deployed in parallel to
a VCS (in this case Git) [9].

mance profiles parallel to the VCS and assigns them to a specific version of a project,
Perun provides context to the collected data and project’s performance history. This allows
users to not only identify the origin of a performance issue, but also the optimization of
the collection process based on the source code differences from previous versions. More-
over, users will not forget to run a profiling whenever there is a new version of a project,
thanks to Perun’s automation using the so-called hooks in the supported version control
systems. Hooks trigger sequences of Perun commands when a VCS action is detected, e.g.,
whenever there is a new commit. These Perun command sequences are called jobs and
their specification is inspired by Continuous Integration systems. As Figure 2.2 illustrates,
Perun provides a report regarding the discovered performance changes, where each of these
changes contains information about its location, severity and confidence. The severity and
confidence are supposed to inform a user about the reliability of the detected change alert.

Another Perun’s advantage is the genericity of its tools. Currently, the tool suite of Pe-
run contains generic (as well as some specific) visualization, postprocessing and collection
modules that form the basic building blocks necessary for specification of jobs and inter-
pretation of collected data. Furthermore, the suite can be extended rather easily with only
a few requirements that new modules must comply to. Other than that, Perun provides
an easy-to-use interface inspired by the git version control system, offering new users that
are, however, experienced with git, not so steep learning curve. Currently, Perun interacts
with users mainly through the Command Line Interface (CLI) that fully supports all of its
features. A prototype of a Graphical User Interface (GUI) is currently in development.

2.2 Architecture

Perun consists of components that manage the performance profile creation, postprocessing,
interpretation, analysis and, as a consequence, provide the users with the necessary tools

Working Directory VCS Perun
Checkout Collection ==p- ion Detection
F T R ———— & New Project Version ===m===m= - Runnable ===} Profile ==$ Profile > hanges
[remememememememeseeeg :
HEAD .
1
Y . performance H
20 L @m0 >3- 00— e
10 | #include <random> _ . - . N . B H
11 | - #include ". /structures/SLList h" : .
+#include ". fstrue tures/skiplist.h Unke H
include " fstructures/skiplist i i nknown A H
.
5 H Performance I
: H "]
e H @ >} D >} a B2 I D—’ Optimization E
. E o @ H
5 H
E Eﬂ =) B -v=b‘lll)+h, i
: HEAD~1 b= Loading Baseline Profiles odds H

(pamany

Figure 2.2: This figure describes a workflow of Perun [9]. For each new project version,
a number of tasks (known as jobs) is collecting performance data, processing it and searching
for performance degradation or optimization compared to previous project version.

for robust performance analysis. Figure 2.3 shows that Perun’s architecture can be divided
into four main logically separate units — data, logic, view and check.

) PERUN i
LOGIC
T En POSTPROCESS COLLECT
Haoks | | . B .
© SVN vCs r------ » [Regression A. Kemel Reg. Time Trace
© Regressogram Memory
Moving Avg. Complexity
H A
Processes g DATA] o Generates
,,,,,,,,, > Ot ii RS)
Profile
Visualizes ! Detect Changes
Y h 4
VIEW CHECK
GUl Heap Map Linear Reg. Integral Method
CLI Scatter Plot Polynomial Reg. Local Stats
Flame Graph | | |: BestModel Q. [|

Figure 2.3: The architecture of Perun, as divided into separate units (data, logic, view and
check) and the VCS module (containing interface for Git, SVN, etc.). The data unit is
interacting with every other unit and managing profiles, which are created and processed
by the logic unit. The view unit is responsible for interpretation of the collected data and
the check unit searches for performance degradation based on the profiles. Taken from [27].

Data. This unit provides an interface for the performance profiles management, which
is utilized by every other unit. Because of that, the Data unit represents the core of the
architecture. Among the key interface operations is the finalization of a profile form and
handling of queries regarding the collected data. Profiles are unified under a format based
on JSON which allows a great flexibility for the communication between the Units, and
easy extensibility.

Logic. The profiles are created and processed in the logic unit, where the profiling data
is gathered and parsed by the Collectors, and possibly processed by the Postprocessors
for further interpretation. This unit also handles many tasks related to the automation,
CLI and repository configuration including the VCS hooks. Users can select from multiple
collectors based on the information they seek. Perun contains the following collectors:

e Trace collector measures the time consumption of functions and custom code blocks.
Design of the Tracer architecture allows the user to choose from a range of so-called
engines, which utilize different instrumentation frameworks for the collection of per-
formance data. More in-depth description of the Tracer collector can be found in
section 2.3.

e Memory collector is focused on gathering information about memory allocations in
C or C++ programs. The recorded data contain overall heap memory usage with
many related attributes, such as memory allocation types or their target addresses.
The data collection is facilitated using the 1ibunwind' library and custom libmalloc
libraries.

e Time collector is implemented as a simple wrapper around the time utility and collects
the overall duration of arbitrary commands.

e Bounds collector performs automated static analysis of worst-case resource bounds
of C programs. This collector leverages the Loopus” tool for computing bounds of
loops or Facebook Infer plugin Cost for asymptotic complexity analysis of functions.
While Loopus is limited to integer programs only, it computes symbolic bounds for
each function and loop, highlighting the main source of the complexity. The Bounds
collector then reports the complexity of analyzed functions using the big-O notation.

Postprocessors are used for transformation of the data, which helps with identification
of potential relations among them. The notable postprocessors currently implemented in
Perun are:

o Normalizer postprocessor is used for scaling of the collected data to the interval (0,1).
This postprocessor is meant to enable profile comparison when the profiles were not
created with the same workload or parameters.

e Regression analysis offers various computational methods and models for finding fit-
ting models for trends in the captured profiling resources. The regression analysis
requires dataset with independent and dependent variables to find a fitting model for
dependent variable based on the independent one. The postprocessor currently aims
to find a well suited model (linear, quadratic, logarithmic, etc.) for the amount of
elapsed time depending on the size of the data structure the function operates on.

e Regressogram method, or binning approach, is a simple non-parametric estimator.
This method tries to fit models through data by dividing the interval into N parts,
where each part is represented by a value equal to the result of the selected statistical
aggregation function within the values in the concrete part. The regressogram is

!See https://www.nongnu.org/libunwind/.
2See https://forsyte.at/software/loopus/.

https://www.nongnu.org/libunwind/
https:// forsyte.at/software/loopus/

hence a step function (i.e. constant function by parts). The thesis [29] describes this
method, its implementation and also other statistical methods in more detail.

View. This partly independent unit is responsible for input/output interaction with a user.
This unit provides a number of visualization techniques that provide better interpretation
of the collected data. Some of the currently supported visualization methods are:

e Bars Plot is capable of visualizing multiple types of resources as bars while providing
the user with a moderate customization possibilities thanks to the Bokeh® library,
which is used to generate interactive HTML files.

e Flow Plot also utilizes the Bokeh library for visualization of the collected data as
a flow. This method supports a high number of profile types.

e Heap Map can be used to visualize the data collected by the Memory collector. The
visualization contains memory address map with representation of memory usage,
such as the allocated objects or frequency of the address usage.

Check. Consists of detection methods that report possible changes in performance of
a project. Check expects a pair of performance profiles where one represents the new
version of the project, and the other represents the stable version. These profiles are then
compared, which provides relevant information about the state of the new version of the
project. Based on the particular resource types present in the profiles, this unit uses various
methods, among other the Average Amount Threshold method or the Integral and Local
Statistics methods which were introduced in [29].

2.3 Tracer Collector

One of the collectors present in Perun is the Tracer collector. This collector is an important
part of the Perun tool suite since it gathers information about run-times of selected functions
and custom code blocks executed during the profiling of a program, while keeping track
of the call hierarchy as well. Tracer architecture allows multiple implementations of its
backend (so-called engines). Engines leverage different instrumentation frameworks for the
purpose of collecting performance data.

The usage of Tracer can be described in the following manner. A user can select Tracer
as the collector through the Perun interface, along with the specification of the collection
parameters. Among the parameters are code locations that are going to be measured. These
locations are selected either manually by the user, or automatically by Tracer — for which
the user can select one of the strategies provided by the Tracer. The collection process itself
is divided into four stages: before, collect, after and teardown.

1. In the Before stage Tracer initializes the selected engine and uses it to instrument” the
code with handlers for every function or custom code block according to the specified
collection strategy.

3See https://bokeh.org/ for more information.
“Instrumentation is a technique for inserting extra code into an application to observe its behavior.

https://bokeh.org/

Before After
esx)tlgggtl)sn Build] greolzgaartr? Delegate Delegate Delegate
. strategies engine * assembling collect ¢ transform : clean up
Common engines interface
{ Engine 1 { Engine 2 | | Engine N
Assemble :‘Engine Collecté Assemble Assemble :EEngine Collecté
© Transform . Transform ¢ Transform

Figure 2.4: Schematic overview of Tracer architecture introduced in version 0.19 in the [27],
which unifies interface for multiple engines.

2. The Collect stage facilitates the collection of performance data by launching the
executable file of the program and tracing it until the process terminates, or a timeout
is reached.

3. The After stage encapsulates the transformation of the collected raw data output into
Perun resource records, which are then stored in a profile.

4. At the end of the collection process, the cleanup of all the used resources (such as
temporary files or instrumentation framework processes that are still running) takes
place in the Teardown stage.

Tracer, as well as any other collector, needs to meet certain requirements to be reliable.
Low overhead is a major requirement, because it extends the time period needed for the
data collection. Minimization of influence on the collected data, namely the run-time of
the system under test (SUT) is necessary. Collectors should also minimize the number of
dependencies and not require an manual modifications of source code by the user. However,
fully satisfying all of the requirements is not possible, therefore finding a balance between
speed, accuracy and memory requirements of the collector is crucial.

Each of the Tracer engines must implement the Common Engines Interface [27] (see Fig-
ure 2.4) that abstracts the communication with concrete engines. This interface allows for
easier extension of the Tracer with another engine that leverages a new framework for per-
formance data collection. This approach enables implementation of multiple engines where
each of them introduces new advantages over the other and allows a user to decide which
engine suits his needs the best. Common Engines Interface is designed as the following set
of functions (where — represents return type):

e check_dependencies: checks that all of the engine requirements are satisfied and all
of the dependencies are available.

e available_usdt — dict: extracts available User-space Statically Defined Tracepoint
(USDT) probes, which were defined by the developers of SUT in a framework-specific
manner.

o assemble_collect_program: assembles the collection program with respect to the
specification of profiled probes.

e engine_collect: runs the collection process.

e transform — generator: transforms the raw performance data collected by the
selected engine to the unified Perun resources.

e cleanup: frees the set of resources that have to be cleaned up in order to avoid serious
issues, such as corruption of collected performance data.

The previously mentioned collection strategies enhance the automation of Tracer. Every
strategy defines what functions should be profiled, without the need to specify them manu-
ally. One of the major strategies is the Userspace strategy that filters out function symbols
that have not been defined by the user, such as various helper functions created by the
compilers (_init, _fini,...). The collection strategies also include the All strategy, which
instruments all of the functions within the executable file with no filtering whatsoever, or
the Custom strategy that allows a user to specify the function symbols without utilizing any
automatic extraction. The [27] contains information about the collection strategies while
also specifying their advantages and disadvantages.

10

Chapter 3

PIN Framework

Dynamic analysis of programs usually (but not exclusively) requires robust software instru-
mentation tools for tasks such as profiling, performance evaluation, and bug detection. One
of such instrumentation tools is the PIN framework, which can be utilized for program pro-
filing. This Chapter introduces PIN and pintools (Section 3.2), goes over its inner workings
and addresses PIN’s efficiency and transparency. Section 3.4 briefly introduces eBPF and
SystemTap frameworks and, compares them to PIN. Furthermore, the differences between
the two modes of instrumentation supported by PIN are discussed in Section 3.3. Other
than the introduction of PIN, this Chapter tries to establish the arguments for choosing
PIN for the implementation of Tracer’s engine. This Chapter uses the information from
previous works related to Perun [27, 19].

3.1 Overview

PIN [20] is an instrumentation system for program analysis, developed by Intel, which
supports the Linux, MacOS and Windows operating systems and TA-32, x86-64 and MIC
instruction set architectures. The goal of PIN is to provide an instrumentation platform
for building a wide variety of dynamic program analysis tools with the emphasis on ease-
of-use, portability, transparency, efficiency, and robustness. PIN performs Dynamic binary
instrumentation of applications at run-time on the compiled binary files. Thus, it requires
no recompilation of the source code and can instrument programs that dynamically generate
code.

Instrumentation of an application using PIN is done with pintools written in C/C++, us-
ing PIN’s rich application programming interface (API), which allows a pintool to insert
calls to handlers at arbitrary locations in the executable file. The API allows access to
architecture-specific information and abstracts away the underlying instruction set idiosyn-
crasies, making it possible to write portable instrumentation tools. The Section 3.2 covers
the pintools further.

PIN provides efficient instrumentation by using a just in time (JIT) compiler to insert and
optimize code. To further optimize the jitted code, PIN implements code caching, register
reallocation, inlining, instruction scheduling and other techniques. This fully automated
approach distinguishes PIN from most other instrumentation tools, such as Valgrind [25]

11

or DynamoRIO [5], which require the user’s assistance to boost performance. PIN sup-
ports process attaching similar to a debugger —it first attaches to a process, instruments
it, collects profiles and eventually detaches. This approach significantly improves the per-
formance since the overhead caused by PIN is present only when attached to a process.
The support for attaching and detaching to a process is necessary for the instrumentation
of large, long-running applications.

PIN guarantees the instrumentation transparency by preserving the original application
behavior which means that the application observes the same addresses and same values as it
would in an uninstrumented execution. An example of this behavior could be an application
unintentionally accessing data beyond the top of the stack, so PIN will not modify the
application stack. The instrumentation transparency makes the collected information more
relevant, and is also necessary for correctness of the measured data.

PIN, in its essence, is a just in time compiler, which however, expects a regular native
executable instead of a bytecode as its input. Since PIN works on a layer above the oper-
ating system (see Figure 3.1), it can only capture user-space code. When an instrumented
program is running, there are three binary programs present: the application, PIN and
the pintool. PIN is the engine that jits and instruments the application while the pintool
contains the analysis and instrumentation routines. Pintool is also linked with a library
that allows communication with PIN and they share the same address space, however, they
do not share any libraries.

IS ERR TR T — eeen Address space

3 Pintool

: Instrumentation APls

Virtual Machine (VM)

3 JIT Compiler

Emulation Unit

ftessssssessssnsssessnsssnensnssnennns?

Operating System
Hardware

Figure 3.1: The software architecture of the PIN instrumentation framework showing that
PIN works on the layer above operating system while reading the selected application and
instrumenting its code according to pintool specification. The image was taken from [7].

12

The execution of a program while using PIN to instrument its code works as follows. PIN
intercepts the execution of the first instruction of the executable, generates and compiles
new code for the next trace—a straight-line sequence of instructions which terminates at
an unconditional control transfer (branch, call or return statements) or when a predefined
number of conditional control transfers or individual instructions have been fetched in the
trace [20] — starting at this instruction and then passes control to the generated sequence.
This newly generated code sequence is almost identical to the original, but PIN ensures that
it regains control when a branch exits the sequence. After regaining control, Pin generates
more code for the branch target and continues execution. Every time JIT compiler fetches
some code, pintool has the opportunity to instrument the code before its translation. This
means that only executed instructions can be instrumented. The instrumented code is kept
in memory for its reuse, which also makes PIN more efficient.

3.2 Pintools

The tools specifying the instrumentation details for PIN, called pintools, enable the tool
writer to analyze user-space applications. A pintool is a compiled binary file. For Linux, it
is a shared library with a .so extension and for Windows systems, it is a dynamic library
with a .d11 extension, and dynamic library with a .dylib extension for macOS. Pintools
can be thought of as plugins that can modify the code generation process inside PIN. PIN
allows tool writers to analyze an application at the instruction level without the need of
detailed knowledge of the underlying instruction set thanks to the API, which makes the
tool writing easier. The API is designed to be architecture independent whenever possible
and allows context information, such as register contents, to be passed to the injected code
as parameters. This rich API provided by PIN enables instrumentation at these different
abstraction levels [21]:

e Image level allows the pintool to process an entire image. Thus iterating through the
whole program sections, routines in a section or individual instructions in a routine
is possible instrumenting the program.

e Routine level allows the pintool to process a routine at a time with the possibility of
iteration over instructions inside the routine.

e Trace level allows the pintool to process one trace at a time by starting from the
current instruction and ending with an unconditional branch (e.g. call or return
statements).

e Instruction level allows the pintool to process an instruction at a time.
Since pintool shares the same address space as PIN and the instrumented executable, that
pintool has access to all of the executable’s data, even the file descriptors and other process

information. Pintools in general have two major components that need to be defined in
a pintool:

o Instrumentation routines define the precise location where instrumentation is to be
inserted (e.g. before or after an instruction).

13

o Analysis routines define what needs to be done when the instrumentation is activated
(e.g. increment a counter).

3.3 JIT and Probe Modes

Until now, this chapter presented the JIT mode. In the JIT mode the code that is actually
executed is the code generated on-the-fly by PIN and the original code is used only as
a reference but never executed. This mode uses JIT compiler to generate instrumented
code according to the specification created by user in the pintool. However, PIN can also
operate in the so-called Probe mode.

The Probe mode is a method of inserting probes at the start of specified routines. The
application and the replacement routine are run natively in this mode, which improves
performance at the cost of putting more responsibility on the pintool writer. A probe is
a jump instruction (also called trampoline) that is placed at the start of specified routine and
redirects the flow of control to the replacement function, which can also call the replaced
routine. The Probe mode enables only instrumentation on a routine level, i.e. probes can
be placed only at the routine boundaries.

0x400113d4: jmp 0x41481064

0x400113d5: [function Foo]
0x400113d7:

0x400113d8:

0x400113d9: push %ebx

0x41481064: .. Tool code [Tool/Wrapper]
O0x414827fe: call 0x50000004

0x50000004:| push sebp [Copy of Foo entry]
0x50000005: mov sesp, $ebp

0x50000007:| push sedi

0x50000008:| push sesi

0x50000009: jmp 0x400113d9

Figure 3.2: A sample probe code for function Foo, taken from [8]. This example illus-
trates instrumentation in PIN Probe mode where the probe itself is placed just before the
Foo function (at address 0x400113d4). The function is copied to addresses 0x50000004—
0x50000008. The probe unconditionally jumps to the instrumented version of the function
(defined in a pintool) which also calls the original function.

When comparing these two modes, the JIT mode is far more flexible and common approach

and even though it might be slower than Probe mode, it introduces transparency and ease-
of-use. The Probe mode has, on the other hand, lower overhead approach that is more

14

efficient, but also less flexible. The Probe mode also does not provide transparency since
the original instructions in memory are overwritten by trampolines.

3.4 Using PIN in Perun’s Tracer Engine

Perun (see Chapter 2) has multiple implementations of Tracer engines (discussed in Sec-
tion 2.3) utilizing different frameworks. This thesis focuses on implementation of a new
engine using the PIN instrumentation framework to extend the Tracer with faster dynamic
binary instrumentation thanks to the low overhead of PIN framework. To better under-
stand why is this new engine implementation utilizing PIN a beneficial addition to the
Tracer, this section briefly introduces the other instrumentation frameworks currently used
in Tracer engines and compares them to PIN instrumentation framework.

SystemTap [11, 17] provides an infrastructure for gathering information about the run-
ning Linux system (as well as the process running on the system) and enables its detailed
analysis. This allows developers and administrators to identify causes of performance is-
sues or bugs. SystemTap is a tracing and profiling framework, which supports all of the
current state-of-the-art dynamic instrumentation and probing mechanisms: kernel trace-
points, USDT, kprobes, uprobes, performance counters and, to a certain degree, in-kernel
programming. This makes SystemTap one of the most powerful general-purpose profiling
frameworks available for probing of the kernel-space events, as well as the user-space events.
The instrumentation is performed by leveraging custom kernel modules to inject probes and
their handlers (a code that is executed when a probe is activated). These kernel modules
are automatically created from the script provided by the user, which specifies events and
defines handlers for them. The script is then translated to the C language to create a kernel
module that is subsequently loaded by the system.

eBPF [12, 6] stands for extended Berkely Packet Filter — mechanism that makes the Linux
kernel dynamically programmable. As Brendan Gregg said in his book BPF Performance
Tools [12]: “eBPF does to Linux what JavaScript does to HTML”. Originally designed to
capture and filter network packets, eBPF is an highly enhanced version of the original BPF
used to filter network packets. The eBPF features extended instruction set and optimiza-
tions for modern hardware which opened the possibility to write more complex programs.
In its essence, eBPF (also reffered to as simply BPF) is a highly advanced virtual machine
(VM) inside the kernel that runs instructions from its own instruction set in an isolated
environment. As stated in [6], “In a sense, you can think of BPF like how you think about
the Java Virtual Machine” —it is a specialized program capable of running machine code,
compiled from high-level programming language, inside Kernel. The eBPF engine consists
of an interpreter and a JIT compiler that translate the executed eBPF instructions into
a native system instructions. The user defined program for eBPF can be supplied at a run-
time, and is verified by the e BPF verifier which ensures that the provided program will not
compromise the user’s system by crashing the kernel. The communication between kernel
and user-space is done through eBPF maps [23]. This design greatly improves the means
of dynamic in-kernel programming and allows the user to run custom mini programs in the
kernel.

Although both of these frameworks do their job well, there are differences and therefore,
each of the frameworks has its own set of advantages and limitations. The SystemTap

15

framework, for example, provides a multitude of options when probing kernel-space events
for a wide range of kernels. However, some kernel versions do not support user-space
probing. SystemTap also needs kernel debuginfo even though the generic kernel comes with
CONFIG_DEBUG_INFO and CONFIG_KPROBES disabled, which means that some distributions
require recompilation of the kernel before running SystemTap. Since both of the frameworks
closely cooperate with kernel, they require elevated privileges. This is not required by PIN,
because this framework operates in the user-space. Similarly to SystemTap, the eBPF
framework requires a fairly recent version of kernel to unlock its full potential. The eBPF
framework was developed as part of the Linux kernel and hence is strongly dependent on
it, which makes eBPF programs less portable. When it comes to security, eBPF excels,
however, the security is forced by limitations on the programs created by the user. While
PIN does not rely on the Linux kernel as much as the other frameworks, it relies much more
on the processor architecture. PIN also supports multiple operating systems, which favors
its portability. Overall summary of the PIN framework compared to other Tracer engine
implementations can be found in Table 3.1.

Table 3.1: A comparison of eBPF, SystemTap (both frameworks already used in Tracer
engines) and the PIN framework proposed for a new engine implementation. This table
highlights the advantages of PIN over the current implementations, and even though PIN
does not support the kernel-space instrumentation, the new engine leveraging PIN frame-
work will be a valuable addition to Perun’s Tracer.

SystemTap | eBPG | PIN
Kernel-space instrumentation X
Users-space instrumentation

Defines own handlers

Fully dynamic tracing

Does not require root privileges

Does not require kernel debuginfo
Does not rely on recent kernel version

x X X X
*x X X

16

Chapter 4

Analysis of Requirements

This chapter provides an overview of the planned functionality of the resulting Perun exten-
sion. The list of functional and non-functional requirements, along with a brief description
of the resulting functionality, ensures that the reader is acquainted with not only the capa-
bilities and constraints of Perun’s new Tracer engine, but also with the aim of this thesis.

4.1 The Resulting Functionality

This work aims to improve the Perun performance version system by introducing a new
useful and reliable extension for one of the existing collectors — Tracer. The new extension
should leverage PIN framework to not only implement existing Tracer capabilities (e.g.
function run-times collection) for the programs written in C/C++4, but also extend the
scope of collected data by gathering basic function parameters and run-times of every
executed basic block.

The resulting Tracer engine should support a collection of data in two modes: JIT and
Probe mode. The JIT mode will be the default mode of the engine and should allow the
collection of function run-times as well as certain function parameters and basic block run-
times. The Probe mode is also to be fully supported, however, its restrictions do not allow
collection of basic block run-times.

The decision of which mode will be used and which additional data to collect will be made by
the user of the engine before its execution. Based on the selected settings, the engine will be
able to assemble a pintool — definition of how the data is going to be collected and stored.
However, the arguments collection process requires an analysis of the debug information in
DWAREF format [24, 28] to determine the types of arguments and their indices. This work
focuses on collecting a basic set of argument types, namely integers, characters and strings
(char*) while also supporting real numbers (float and double), although not fully. This
set of supported argument types will be extended in future work.

Since the Perun’s task in general is to detect performance issues and suggest possible
opportunities for optimization, this work will introduce two new visualizations that strive
to help with these goals. One of the visualizations should focus on capturing the dependence
of function run-times on its arguments values, which helps developers analyze the source
of function complexity. The other visualization should display the most time consuming

17

functions and the basic blocks in these functions with the amount of time consumed by

them.

4.2

Functional Requirements

The intended functionality of this thesis and the core requirements for the Tracer engine
utilizing PIN instrumentation are as follows:

10.

11.

12.

13.

14.

. FR__PE (Perun extension): The resulting project is integrated into Perun and

extends its functionality as one of its Collectors.

. FR_TE (Tracer engine implementation): Implemented in Tracer collector as

one of its engines, providing full functionality of a collector.

. FR_PIN (PIN framework): Leverages PIN framework for the collection of the

required performance-related data.

. FR_PI (Pintool implementation): Implements multiple pintools that describe

how a program should be instrumented.

. FR__PM (Pintool Makefile): Creates general Makefile for compilation of imple-

mented pintools.

. FR_JM (Support for JIT mode): Fully supports PIN’s JIT mode for data

collection from running applications.

FR__PM (Support for Probe mode): Supports Probe mode for data collection
from running applications with respect to its limitations.

. FR_FRT (Function run times): Is able to collect information about the duration

of function execution and other necessary data for its identification.

. FR__FAI (Function argument information): Is able to obtain values from func-

tion arguments and extract valuable information form them.

FR__SRF (Support for recursive functions): Fully supports collection of re-
quired data in recursive functions.

FR__BRT (Basic block run-times): Is able to collect lengths of basic block exe-
cution times and other data for its identification.

FR__SMA (Support for multi-threaded/process applications): Provides sup-
port for any multi-threaded/process application and is able to distinguish collected
data in each thread/process.

FR__PG (Profile generation): Converts the collected data to a generic format
(i.e. Perun profile) and extends it to encompass the function arguments and basic
block run-times.

FR__VIZ (Visualization of collected data): Provides a user with the ability to
visualize the collected data for further manual analysis.

18

4.3 Non-functional Requirements

While the functionality is a key part of this thesis, the following non-functional requirements
play a big role in the overall quality of the final Tracer engine:

1. NFR__SCA (Scalability): The new Tracer engine design takes into account that
programs using Perun could be of any scale and supports them with reasonable speed.

2. NFR__MAIN (Maintainability): Well documented and readable implementation
with possibility of easy modifications by independent developers. This is one of the
key factors for a long lifespan of a project.

3. NFR__REL (Reliability): The reliability of a program must be one of the main
priorities of every project. Final implementation is well tested and passes the tests
utilized by the Perun Pull Request toolchain.

4. NFR__MO (Minimal overhead): The collection of data regarding time is sensitive
to any introduced overhead and therefore the implementation focuses on reduction of
overhead, not only at collection part of Perun’s process.

5. NFR__MD (Minimum number of dependencies): The implementation intro-
duces a minimal number of mandatory dependencies. Although a useage of already
created and reliable libraries is to be expected, the new Tracer engine will use only
necessary and maintained dependencies.

6. NFR__QUX (Quality of user experience): The whole process of data collection
is automated and provides an easy interface for selecting the desired settings with
options for manual analysis of collected data.

19

Chapter 5

Design and Implementation

This chapter contains a comprehensive description of implementation with emphasis on
design decisions. Firstly, this chapter presents details of extending the Perun with the
implementation of a new Tracer engine using PIN framework (Section 5.1). Furthermore,
this chapter covers implementation details of additional Tracer extensions (Section 5.2) and
lastly, Section 5.3 describes the implementation of visualizations of collected data.

5.1 Tracer PIN Engine

To create a basic Tracer engine, which collects data about function run-times, one needs to
implement the generic engine interface, which consists of six independent methods. Each of
these methods represents a different stage of the data collection process, a phase where dif-
ferent actions need to take place. The introduction to Tracer’s engine interface in Section 2.3
briefly describes each method, and the following Section 5.1.1 describes the implementation
details regarding the interface.

A substantial part of the engine’s collection process is the creation of the collection pro-
gram, a pintool in this case. The collection program specifies how the collection of data
should be executed, and this is the core of the whole collection process. A closer specifica-
tion of pintools can be found in Section 3.2, and implementation details regarding pintool
creation and design, along with the challenges related to its compilation, are described in
Section 5.1.2.

The data collected by PIN need to be processed right after the collection into the Perun
profile, which unifies the format of data and enables its analysis afterward. On top of
that, this part of the process also facilitates the conversion of collected time data from
time stamps into actual run-times of every execution of functions or basic blocks. The
implementation of this phase of the process is covered in Section 5.1.3.

5.1.1 Tracer Engine Interface
Every new Tracer engine has to implement the abstract class CollectEngine and divide its

collection process into phases represented by the abstract methods of this class. In order
to use the engine from the command-line interface, it needs to be registered among the

20

supported engines in the definition of the CollectEngine class, and added as an option
using the Click' library that is utilized to implement Perun’s command-line interface.

When a user invokes the Perun collection process using a Tracer engine, the engine first
creates the required temporary files and checks that the dependencies necessary for the
successful execution of the collection process are satisfied. In this case, the files created
are the pintool source file (pintool.cpp), its Makefile (Makefile) and a data file where
the PIN output will be saved (this file has a unique name with each creation). The only
hard dependencies of the collector are pin and g++ (GNU C++ compiler) which need to be
installed in the user’s PATH (hence executable from the command-line). The installation
of PIN might not be as straightforward, since the PIN framework officially provides only
a development kit, which does not include an installation script.

Right after the necessary checks, there is a phase in which the engine is supposed to gather
information about the available USDT probes, however, the PIN framework does not sup-
port the USDT probes. Therefore, the implementation of this method (available_usdt)
returns an empty python dictionary every time it is executed, which effectively skips the
phase entirely.

One of the key steps before the data collection itself begins is the creation of the pintool that
will be used in the process. This is facilitated in the engine’s assemble_collect_program
method where the engine assembles a new pintool based on the specified requirements by
the user. The generation of the core parts of the pintool is done using Jinja2? templates
that allow a high level of flexibility. This is possible thanks to the design of pintools, which
can be split into major semantic parts and easily assembled, in this case, by Jinja2. Since
pintools are written in C/C++, the engine needs to generate the appropriate source code
and then compile it using the g++ compiler that the engine requires for this purpose. The
PIN framework’s kit includes a Makefile written for general compilation of any pintool
inside the kit’s directory, however, when integrating it with Tracer’s engine, some minor
changes regarding the Makefile invocation had to be done so that the compilation would be
possible from the Perun’s temporary folder. The creation of pintools and Makefile, along
with implementation details regarding this phase, are covered in more detail in Section 5.1.2.

After the pintool is assembled, the collection process is ready to start. The pin command
is executed in the method collect with the created pintool and binary along with the ar-
guments for its execution specified by the user through the Perun’s command-line interface.
In this phase, PIN instruments and executes the provided binary (either in JIT or Probe
mode, which handles the execution in a different manner) and populates the temporary
data file with collected data.

Parsing of the gathered data is done immediately after its collection in the transform
method. The purpose of this phase is not only to convert the collected data into a unified
format, but also to validate and pair the records created by PIN, since there are two
parts from which the record consists —the entry point record and the exit point record
for each function or basic block execution. These two records contain the information
that unambiguously identifies the program location and the time stamp when the entry
occurred. These two records need to be combined into one which holds the data that
identifies them and also the duration between the two points. However, sometimes the PIN

!See https://click.palletsprojects.com/en/latest/.
2See https://jinja.palletsprojects.com/en/latest/.

21

https://click.palletsprojects.com/en/latest/
https://jinja.palletsprojects.com/en/latest/

output contains only an entry point to a certain function, which signals a failed record
and needs to be filtered out. The Section 5.1.3 dives further into the details of parsing the
collected data.

At the end of the whole process, the engine executes the cleanup method, which removes
temporary files and concludes the whole Tracer execution process.

5.1.2 Pintool and Makefile

When designing a pintool, one needs to define a method of program instrumentation, what
data should be collected, and the format in which the data will be produced. The method
defines not only the mode of instrumentation, but also its granularity. This work requires
the implementation of multiple pintools in order to provide only the specified data and to
use a specific mode. Since the collection of data and its transformation requires a substantial
amount of time, collecting all of the possible types of data every time would be unnecessary,
and especially time consuming. Therefore, the Tracer engine creates a new pintool with
each execution, which provides the needed flexibility of the pintool.

The generation of a pintool is handled by Jinja2 templates that allow easy modification of
pintool contents using python. Thanks to the general design of pintools, their structure can
be split into three major parts, each representing one template:

e Analysis: defines the analysis functions where the timestamps are recorded and the
output format is defined.

e Instrumentation: filters unnecessary instrumentation points based on the instru-
mentation granularity and assigns the analysis functions to these points, while also
providing the necessary data to these functions which is then included in the collection
output.

e Main: represents the main function of the pintool, where the necessary callback
registrations are done, and the SUT is executed in one of the available modes (JIT or
Probe).

Analysis template defines two types of analysis functions that are very similar. Analysis
functions produce records before and after the execution of any function. These records
contain information about the instrumented function (its name and identification number),
but also the timestamp and the information where this record was created (either before
or after the instrumented function) so that the output provides the necessary information
to determine which records need to be combined for the calculation of the run-time of
a function. Although, this might be enough to satisfy FR__ SRF (Support for recursive
functions) the information will not be enough to satisfy the FR__SMA (Support multi-
threaded/process applications), and therefore neither the FR_ FRT (Function run-
times). In order to satisfy these requirements, the analysis functions need to output the
thread and process identifiers, and also access the output file safely using the Mutex locking
API? provided by the PIN framework. The definition of this output format can be found
in the Listing 5.1.

3See the section about multi-threaded applications from: https://software.intel.com/sites/
landingpage/pintool/docs/98484/Pin/html/index.htm1#MT.

22

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/index.html#MT
https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/index.html#MT

Granularity;Location;TID;PID;TimeStamp;RoutineID;RoutineName

Listing 5.1: Format of a single line in a PIN output with information separated by
a semicolon. The format contains Granularity to differentiate basic blocks and routines,
Location defining wheter the record is located before or after the routine, a thread iden-
tifier (TID), a process identifier (PID), a TimeStamp containing the time when the record
was taken, and the RoutineID along with the RoutineName that identify the function the
record coresponds to.

The timestamp creation is handled by the 0S_Time function provided by PinCRT [18] and
produces timestamps in microseconds. The selection of a suitable method to get the time
stamp was already researched in the [19], where the 0S_Time function was selected as the
most suitable because its output does not require any further conversions or processing,
and at the same time provides equal or slightly better performance than the other available
methods. Performance is a very important part of analysis functions since they are executed
before and after every instrumented function execution. PIN can inline these functions at
the place of their execution and effectively eliminate the need to call these functions entirely.
However, the functions need to be simple and have no complex control flow structures.
Even though the timestamps in microseconds using this function are applicable, the future
work should focus on providing timestamps in nanoseconds while also respecting inlining
restrictions to ensure that the output is more accurate.

Instrumentation template defines a function that is called every time a new routine is
found and decides if it should be instrumented, and in what way. The decision of which
routines should be instrumented is based mainly on the function IMG_IsMainExecutable
provided by the PIN framework. This function filters routines that are not part of the
executable provided by the user. Another routines that are filtered are dynamically and
artificially” created routines. When using the probed mode, the routines are also filtered
by RTN_IsSafeForProbedInsertion which ensures that the PIN can insert an analysis
function call before or after the function. After deciding if the function needs to be instru-
mented, the insertion of the analysis function call takes palace. This is done by using the
RTN_InsertCall (or RTN_InsertCallProbed when using the probed mode) function and
passing information about the instrumented routine (its unmangled name and identifier)
and the analysis function to it. This means that the RTN_InsertCall function is called
twice, since the insertion must happen before and after the instrumented routine.

Main template defines the main function for the pintool. This part of the pintool de-
fines the granularity of the instrumentation right after the necessary initialization. To
instrument routines, PIN provides RTN_AddInstrumentFunction which allows the regis-
tration of an instrumentation function (defined in the instrumentation template). The
engine could use either image granularity or routine granularity for the instrumentation of
routines. The image granularity is more efficient because the instrumentation function is
called only once for every image and the routines contained in the image are instrumented
right away. Thus, when instrumenting on the image-level, there is less context switching
between PIN and the SUT. However, when combining routine instrumentation with the

4An artificial routine is an routine introduced by PIN for internal management and does not represent
an actual routine in the application. See https://software.intel.com/sites/landingpage/pintool/docs/
98547/Pin/html/group__RTN.html.

23

https://software.intel.com/sites/landingpage/pintool/docs/98547/Pin/html/group__RTN.html
https://software.intel.com/sites/landingpage/pintool/docs/98547/Pin/html/group__RTN.html

extensions described in Section 5.2, PIN failed to collect any data whatsoever, therefore the
engine uses routine instrumentation granularity for the time being. At the end of the main
function, the instrumentation mode is specified: either PIN_StartProgram in JIT mode or
PIN_StartProgramProbed in Probe mode. This aims to satisfy the FR__JM (Support
for JIT mode) and FR_PM (Support for Probe mode).

Every template mentioned before is included in a single template, which represents the
whole pintool. This template contains the necessary include statements, global variables,
the definition of pintools argument (through which the name of the output file is speci-
fied) and the Fini function, which is executed before the end of the program. This way,
the FR__PI (Pintool implementation) is satisfied since the Jinja2 templates provide
a way of creating multiple different pintools that can be easily extended with additional
functionality.

After the creation of a pintool source code, the Makefile for its compilation is generated
similarly using a Jinja2 template. The Makefile defines the path to PIN’s root (path to the
PIN kit) where the default rules for pintool compilation are located, and defines the default
rule which creates a folder for pintool shared object, and then recursively calls the default
rule for its compilation. This creates the pintool.so which is then used in the invocation
of the pin command as a tool that specifies the instrumentation process. This Makefile
structure relies on files directly from PIN kit, which allows use of different kit versions just
by exporting the PIN_ROOT variable containing absolute path to the kit before using the
engine. However, this approach will probably change in the future work.

5.1.3 Transforming PIN Output Into the Perun Profile

When the data collection is finished, the output (see Listing 5.2 for an example) must
be parsed and the gathered information transformed into a Perun profile. This process
requires conversion of the PIN output format (see Listing 5.1), specified in the pintool,
to the internal representation of this data and storing it in the memory until the proper
pair record is found. After that, the two records merge into a single record that contains
additional information such as the function’s run-time. This new record contains all the
information that needs to be stored in the Perun profile, therefore after merging all the
records, a complete Perun profile can be created.

For the purpose of storing a record obtained from PIN, the class RawDataEntry was created.
It serves not only as a simple data structure, but also defines methods that help with
matching records and calculating the time delta of two records. The record format from
PIN output is designed to be as easy to parse as possible. The majority of the information
is stored as integers, except the name of the routine, which is outputted as a string.

When parsing the PIN output, the engine reads the output file line by line, each line
representing a record. These records are stored as RawDataEntry and if the record contains
information about a routine entry point, it is put into a backlog represented by a python
list. This backlog is then searched for a matching entry point whenever a new exit point
record is found. Adding a new record to the backlog must be done from the beginning
of the list instead of just appending them at the end since the search for the index of
pair record starts at its beginning, and the pair matched needs to be the last execution
of the routine. This helps to satisfy the FR_ SRF (Support for recursive functions)
because accounting for the order of executed routines, the recursive routine call record could

24

© 00 J O U i W N =~

S g g S w—
DT R W N~ O

0;0;0;107664;1651054391330820;15;QuickSort
0;0;0;107664;1651054391330895;3; operator new[]
0;0;0;107664;1651054391334661;18;Partition
0;0;0;107664;1651054391334836;17;Swap
0;1;0;107664;1651054391334843;17;Swap

0;1;0;107664;1651054391335763;18;Partition

0;0;0;107664;1651054391336328;18;Partition
0;0;0;107664;1651054391336330;17 ; Swap
0;1;0;107664;1651054391336333;17;Swap
0;0;0;107664;1651054391336336;17 ; Swap
0;1;0;107664;1651054391336338;17;Swap

0;1;0;107664;1651054391336341;18;Partition

0;0;0;107664;1651054391336453;7; operator deletel]

0;1;0;107664;1651054391338574;15;QuickSort

Listing 5.2: An example of an output featuring QuickSort function execution. The records
are reduced and indented for better readability.

be mismatched since the PIN output does not contain any special identifiers for routine
calls, which would unambiguously distinguish each call and eliminate the need of keeping
the backlog sorted. After finding a pair of records, both are merged into a single record
that contains the run-time of the routine (the time delta of the time stamps from the two
records) along with the shared information by both original records. This new record is
represented by the FunctionCallRecord class which serves as a simple data structure and
has a method that converts the data to a python dictionary, suitable for storing in the
Perun profile as a resource.

Since the common engine interface function transform, which takes care of the data trans-
formation, needs to be a python generator, the merged records are immediately yielded as
resources by this function. A resource represents one merged record and its format needs
to be a python dictionary with specific keys —the fields containing information about the
record. Since the fields were designed for the purpose of storing the information about
function run-times, there is no need to register new ones when implementing basic Tracer
functionality. This satisfies the FR__PG (Profile generation) requirement for the basic
functionality of the tracer.

5.2 Extending the PIN Engine

With the basic Tracer functionality implemented, the extensions featuring the new capa-
bilities can be built. The new functionality strives to leverage the PIN framework features
to great extent and provide useful information in return. The collection of function argu-
ments provides the user with crucial information which connects function run-times to its
argument values and allows for further analysis of the run-time dependence on the value
of specific argument. Gathering information about the function arguments is one of the

25

new additions to the Tracer’s PIN engine. However, for this purpose the engine has to
utilize the DWARF debug information contained in the binary, which is required for the
arguments collection. In order to collect function argument values, the types and positions
of the arguments need to be known before the pintool creation, because the pintool requires
definition of separate analysis functions for each routine that needs the argument collection.
The arguments collection can be enabled in both JIT mode and Probe mode, and can also
be combined with another new feature: the collection of basic block run-times. The basic
block run-times can be, however, collected only in JIT mode due to a restriction of the
Probe mode. The Probe mode does not allow greater granularity of the instrumentation
than routine level. Despite the restrictions, the basic block run-times can help the user
pinpoint the source of slowdown in their programs better. In the following Section 5.2.1,
the functional requirement FR__FAI (Function argument information) is addressed
in more detail, and Section 5.2.2 breaks down the FR__ BRT (Basic block run-times)
requirement.

5.2.1 Arguments Collection

Although PIN provides a way of accessing the values of instrumented function’s arguments,
the pintool writer needs to know the position and the type of the argument before creating
a pintool. This means that the pintool needs to be designed specifically for every instru-
mented program whenever the argument collection is involved, taking into consideration
the functions with arguments that need to be collected. In order to gather the necessary
information about function arguments, the engine uses the DWARF debug information
stored in the binary and forms an internal representation in form of a python dictionary.
The dictionary is then used to aid in the process of pintool creation and indirectly improves
the visual representation of the collected data.

Obtaining the information about function arguments could be done in a few different ways.
Static analysis of source code is one of them, however, the tools designed for this purpose
tend to be limiting when it comes to the analysis of C++ source code. One of the tools
considered for this purpose was CastXML [14], which is a tool that creates an XML tree
from a C-family source code. Pairing this tool with pygeexml [16] would provide necessary
information about the declared functions. Although this approach would work, it would
introduce a new dependency in form of a program that is still in development after succeed-
ing the GCCXML [15]. It would also need to be installed by the user and then executed
by the engine as a separate process. Hence, instead of approaching this problem through
static analysis, PIN engine extracts the necessary data from the DWARF debug information
using the pyelftools [2, 3] library. Analysis of a binary file could be done using GNU binary
utilities such as nm or readelf, however, using these utilities requires their execution which
produces output that contains unnecessary information and needs to be parsed into an
internal representation. Thus, using pyelftools to extract only the needed information from
the structured DWARF format and converting it straight to the internal representation is
a simpler approach. The binary provided by the user needs to be compiled with the debug
information included, however, using newer versions of the gcc compiler includes DWARF
version 5, which is not fully supported by the pyelftools yet. For this reason, the engine
requires the binary to be compiled with gcc 7.5 which by default uses the DWARF version
4. A compact comparison of the tools considered for collection of function arguments data
is shown in Table 5.1

26

pyelftools | nm | readelf | CastXML

Produces information about functions
Produces information about function arguments

Produces unmangled function names X
Analysis of debug information X
Does not require additional dependencies X
Does not require additional postporcessing X X X
Is not executed as a separate process X X X

Table 5.1: A comparison of the considered tools for collection of information about function
arguments with the ideal requirements for the collection process shown in the first column.

When extracting the necessary information from the DWARF format using pyelftools, ev-
ery debug information entry (DIE) must be read one by one to find the relevant entries.
In this case, relevant DIE is distinguished by the tag DW_TAG_subprogram which contains
the name of the function as one of its attributes (DW_AT_name) and has children DIEs that
hold information about the argument parameters that can be distinguished by the tag
DW_TAG_formal_parameter. The parameter name and type can be extracted from the pa-
rameter DIE. The name extraction is the same as the name extraction from a subprogram
DIE but when it comes to the parameter type extraction, there is a set of predefined DIEs
that define each part of the type, and together form its complete definition starts with the
first type DIE that’s referred to by a parameter DIE in its DW_AT_type attribute. Since this
work focuses on basic types only, extracting them requires a recursive function that reads
the chain of DIEs and forms the type definition (e.g. unsigned long long int). The
supported types are integers int (including the extended versions with long or unsigned),
character char, string char*, and boolean bool. The engine also supports collection of
double and float, however, the values collected by PIN can be wrong, for example when-
ever a float or double argument comes after a pointer argument, such as char*. In these
cases, the collected value does not match the expected value.

The extraction of information about function arguments from the binary is part of the
engine’s assemble_collect_program method which analyzes the binary using pyelftools
whenever the user specifies that the collection of arguments should be included. The infor-
mation provided by the pyelftools is then passed in form of a python dictionary to Jinja2
templates to be utilized in the process of pintool creation. The templates contain additional
parts that were not present in the basic Tracer functionality.

The analysis template creates an additional analysis function for every routine that requires
the arguments collection. These analysis functions also specify the set of arguments they
collect (with the types provided by pyelftools) from the routine they belong to. This
specially designed analysis function will be called before every execution of the instrumented
routine it corresponds to, and its output format is extended by the values of the arguments
of the instrumented function as shown in Listing 5.3.

The instrumentation template contains new logic that determines if the current routine has
its own analysis function defined based on the name of the routine. For this purpose, the
pintool template contains a global array of function names that have their own analysis
functions. If the current routine’s name is in the array, RTN_InsertCall contains the
IARG_FUNCARG_ENTRYPOINT_REFERENCE along with the argument’s index for each argument

27

© 00 J O U i W N~

S
DT R W NN~ O

Granularity;Location;TID;PID;TimeStamp;RoutinelID;RoutineName;argl;...;argN

Listing 5.3: The format of a single line in a PIN output when arguments collection is
enabled. The format builds on top of the format defined in Listing 5.1 and adds the
collected arguments to the end of the format.

0;0;0;162446;16510569266874581;19;QuickSort;10
0;0;0;162446;1651059266874651 ;3; operator new[]
0;0;0;162446;1651059266878176;22;Partition;0;9
0;0;0;162446;1651059266878379;21; Swap
0;1;0;162446;1651059266878385;21; Swap

0;1;0;162446;1651059266879318;22;Partition
0;0;0;162446;1651059266879618;22;Partition;5;9

0;1;0;162446;1651059266879645;22;Partition
0;0;0;162446;1651059266879851;22;Partition;2;3
0;1;0;162446;1651059266879863;22;Partition

0;0;0;162446;1651059266880047 ; 8; operator deletel[]
0;1;0,;162446;1651059266882235;19;QuickSort

Listing 5.4: An example of an output featuring QuickSort function execution including the
collected arguments of the functions executed in the process. The records are reducted and
indented for better readability.

that should be collected, which signals PIN to pass the argument at the specified index as
a reference. On the other hand, when the current routine’s name is not specified in the
array, the instrumentation uses the standard analysis function without arguments.

The main downside of this approach is the definition of analysis function for every routine
that requires argument collection. These functions could be transformed into a single
function using variadic arguments®, however, this approach introduces unnecessary control
flow logic to the analysis function which prevents applying the inlining mechanism provided
by PIN for simple analysis functions. Even though using variadic arguments results in
a compact and a more readable pintool, the additional overhead caused by non-inlined
analysis functions is a bigger concern for this work.

Since the format of the PIN output (see Listing 5.4) is extended whenever the arguments
collection is involved, the parsing of output needs to support this extension. Along with
the format support, the argument values that are not numerical need to be converted into
information that represents them better from the performance impact standpoint. For the
basic arguments supported by the engine, the string charx* is stored as the length of the
string instead of the string itself, and the character char is stored as its Unicode value.

5 Allows a function to accept any number of extra arguments. See https://en.cppreference.com/w/cpp/
language/variadic_arguments.

28

https://en.cppreference.com/w/cpp/language/variadic_arguments
https://en.cppreference.com/w/cpp/language/variadic_arguments

Granularity;Location;TID;PID;TimeStamp;RoutineID;RoutineName;BasicBlockID

Listing 5.5: The format of a line representing a basic block record in a PIN output. The
format builds on top of the format defined in Listing 5.1 and adds a basic block identifier
to the end of the format.

To store the additional new information in a Perun profile, new keys for the resource
dictionaries need to be defined in the Profile class. The keys can be collectible or persistent
which defines their final form in Perun profile. The values of collectible keys are squashed
into a single list for each resource that represents all of the executions in one place. The
persistent values, on the other hand, are same for every execution and, therefore do not
have to be stored multiple times. The keys defined for the arguments include a variable part
in form of an index which on its own makes it impossible to define every possible key in an
array. Thus, the keys are matched using a regex when translating the provided resources
into a profile format.

5.2.2 Basic Block Run-times

One of the features provided by the PIN framework, and utilized in this work, is the
instrumentation of basic blocks. The engine needs to create a suitable pintool for this
purpose and be able to combine this feature with the function run-times collection and the
arguments collection in the JIT mode, since the Probe mode does not support this feature.
The pintool outputs additional information about the instrumented basic block, therefore
the parsing of the output needs to be adjusted to this new format addition, and similarly
the Perun profile also needs to contain this information. When the collection of basic blocks
is involved, the size of the collected data naturally increases along with the time it takes to
process this data.

This extension of functionality requires some additions to the created templates in the
pintool creation process, while keeping in mind that the basic block collection parts of the
pintool can not be generated if the Probe mode was selected. The Analysis template defines
two new analysis functions dedicated to basic block data collection. The PIN output format
(See Listing 5.5) for the basic blocks collection adds a way of deterministic identification
of the basic blocks. The PIN framework API does not provide any form of internal iden-
tification for the basic blocks, so the address of the first instruction of a basic block was
chosen as the identifier. This is possible thanks to the transparency of the PIN framework.
Another part of the output added for the purpose of basic block run-times collection, is
a granularity flag that differentiates a routine record from a basic block record.

The Instrumentation template defines a new function Trace which is called every time a new
trace is found, and the Main template registers it as a callback whenever the collection of
basic blocks is enabled using the TRACE_AddInstrumentFunction function. This granu-
larity of instrumentation is utilized because the trace can be broken down into individual
basic blocks that can be instrumented, as opposed to the routine granularity where each
routine can be broken down into instructions it contains. The individual traces refer to the
routine they are associated with, which helps to filter the traces and also contributes to the
information outputted about the basic block. The filtering of traces based on routine and

29

© 00 J O U i W N =~

Gy G S S G
N O T W N~ O

0;0;0;169925;1651059918274929;22;Partition
1;0;0;169925;1651059918274932;22;Partition;4197398
1;1;0;169925;1651059918274934;22;Partition;4197398
0;0;0;169925;1651059918274937 ;21 ; Swap
1;0;0;169925;1651059918274940;21 ; Swap;4197353
0;1;0;169925;1651059918274942;21 ; Swap
1;1;0;169925;1651059918274945;21 ; Swap;4197353

1;0;0;169925;1651059918274988;22;Partition;4197622
1;1;0;169925;1651059918274991;22;Partition;4197622
0;0;0;169925;1651059918274993; 21 ; Swap
1;0;0;169925;1651059918274996 ;21 ;Swap;4197353
0;1;0;169925;1651059918274999; 21 ; Swap
1;1;0;169925;16510569918275001;21;Swap;4197353
1;0;0;169925;1651059918275004 ;22 ;Partition;4197677
0;1;0;169925;1651059918275007;22;Partition
1;1;0;169925;1651059918275009;22;Partition;4197677

s

I

3

Listing 5.6: An example of a PIN output for a Partition function when basic block collection
is enabled. The records are reducted and indented for better readability.

image associated to it is similar to the Routine function intended for the function run-times
collection. The BBL_InsertCall PIN API function could be used to instrument the basic
blocks inside the trace, however, this approach proved to be unreliable since many basic
blocks would not contain the exit point time stamp. This is due to the fact that in order
to to use the IPOINT_AFTER with basic blocks, their last instructions needs to be a fall
through instruction®. To ensure that the output data contains both entry and exit point
time stamps of each basic block, the decision has been made to instrument only its first
and last instruction, and for both insert the instrumentation code with IPOINT_BEFORE to
avoid the PIN restriction. This is a reliable way of instrumenting every basic block, how-
ever, for the cost of loosing the execution time of the last instruction of a basic block. The
problem of this approach will be addressed in the future work, by respectively assigning
the additional time spent in a function to its basic blocks.

Transformation of the collected data (see example in Listing 5.6) into the Perun profile
adapts to the new PIN output by creating an abstract class Record that represents a merged
record, and having two separate implementations of this class which represent a function
record (FunctionCallRecord) and a basic block record (BasicBlockRecord). When pars-
ing the PIN output, records are distinguished by the granularity flag and stored in separate
backlogs. This addition of a new backlog separates the two different record types based
on their granularity, and ensures that the match is found sooner. The implementation of
records matching is not much different from the version in Section 5.1.3, apart from the
addition of separate backlogs and introduction of two different formats for the PIN output
record based on its granularity.

A fall through instruction is an instruction that does not change the control flow of the program and
executes the next instruction immediately after it. See https://software.intel.com/sites/landingpage/
pintool/docs/98484/Pin/html/group__INS__INSPECTION.html#ga7602edbl17e52¢209492bab2c65fc1612.

30

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INS__INSPECTION.html#ga7602edb17e52e209492bab2c65fc1612
https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__INS__INSPECTION.html#ga7602edb17e52e209492bab2c65fc1612

5.3 Visualizations

One of the essential parts of this work is the visualization of the data collected by the PIN
engine. The manual analysis of the collected data is much easier when the data properties
are highlighted with a specialized visualization that emphasizes them. This work focuses
on visualization of the data collected by the new features introduced in the Tracer engine
based on the PIN framework. Thus, two new visualizations are created in this work where
one shows the dependence of function’s run-time on values of its arguments. The second
visualization contains a graph that illustrates the time spent exclusively in a function and
on top of that, the time spent in the most time expensive basic blocks of this function. The
other graphs created by this visualization is very similar, but shows the number of function
executions instead of time.

Both of the visualization implementations process a Perun profile and output a visual
representation of it. Before the visual representation is created, the Perun profile needs to
be converted into a Pandas [22] DataFrame that contains relevant data for the visualization
process. The visualization process is then realized either by utilizing the Seaborn [30]
library in combination with the Matplotlib [13] library, or utilizing the Bokeh [4] library.
The user can also influence the outcome of the visualization process as well as the data
transformation by using Click command line options provided for given visualization.

The function arguments visualization highlights the importance of their collection by show-
casing the dependence of function run-time on them. This way, it aims to help the user
identify the possible cause of slowdowns in a function. Using the Seaborn and Matplotlib
libraries, the visualization utilizes the scatter plot (see Figure 5.1a), allowing the user to
choose a function that has any arguments collected in the selected Perun profile, and to
choose whether the arguments should be shown in a single graph as in Figure 5.1c, or
individually as in Figure 5.1b. In either case, the graphs provide information about the
arguments including their type and name.

The second visualization leverages the collected basic blocks data and essentially shows the
impact of particular basic blocks on the run-time of a function. The visualization is designed
to point out the most time demanding functions and provide a way of identifying the basic
blocks that might be the cause of a slowdown. The filtering and extensive restructuring
of the converted DataFrame has to take place to prepare the data for the visualization in
a suitable format. The visualization process utilizes the Bokeh library, however, it respects
the Perun restriction which limits the Bokeh version 0.12.6, instead of the most recent
version. The graph created using this library is inspired by one of the examples in the
gallery featured on the Bokeh website” that illustrates enhanced version of a sunburst graph.
This graph (see Figure 5.2a) is created from individual annular wedges which represent
either functions (parts of the background circle) or basic blocks (column-like shapes in the
foreground of the circle). To control what is displayed in the graph, as presented in the
Figure 5.2b, the user can filter by the most time consuming or the most called functions,
and also limit the number of the most time consuming or the most called basic blocks. This
visualization doesn’t directly inform the user about the location of the basic block in their
code. The future work will include this information, which requires deeper analysis of the
PIN output, while taking into account that the basic blocks are discovered dynamically.

"See http://docs.bokeh.org/en/0.12.6/docs/gallery.html.

31

http://docs.bokeh.org/en/0.12.6/docs/gallery.html

QuickSort QuickSortBad

int count int count
6000 : C
20000 - -:;-e
5000 s
S
z) i
= ° = 15000 o
© 4000 > -l
£ ° £ i
§ s 5 : f'.
— L
g 3000 <, e § 10000 R
= L L H = .
S . BRI I B 53
c . 5, = c 0
> . BT S R =1 *se0
- 2000 R w s
[o0
5000 — v“"f
1000 Kl
. "!'lﬁ"
. ‘“-ei"-
L
0
20 40 60 80 100 120 20 40 60 80 100 120
Argument value Argument value
(a) Multiple functions featuring their argument values.
BadPartition BadPartition
int left int right
o ¢ o Arguments legend 7
e %o e . intleft + .
1000 * - .. 1000 - . . intright . .

@ = 800
= =
o [0}
£ £

< ‘T 600
2 2
c c
9 S
© ©

S S 400
g [

200

0

0 20 40 60 50 100 0 20 40 60 80 100 120
Argument value Argument value Argument value

(b) A function with multiple arguments spread (c) A function with multiple arguments in a sin-
into multiple individual graphs. gle graph.

Figure 5.1: An example of the arguments vizualization showing the dependence of function
run-time on its argument values.

32

Basic block time

Basic Blocks Basic Blocks

m TOP1

Function time W TOP3 Function executions W TOP3
-

L = —— -
. m TOP5 - .
o = TOP6 o oo = TOP6

(a) All of the functions with some of the most expensive basic blocks.

Basic block time Basic block executions

Function time Function executions

T -_ -
0% 0% 100%

(b) Top 6 functions filtered by their total exclusive time, including their top 4 basic blocks.

Figure 5.2: An example of the visualization of collected data regarding functions and their
individual basic blocks, featuring graphs with the run-time on the left and graphs with
the number of executions on the right. The large version of these images can be found in
Appendix B.

33

Chapter 6

Experimental Evaluation

This chapter contains practical evaluation of the resulting Tracer engine, while verifying
its functionality and outlining its beneficial impact. The description of the first experiment
conducted on the new engine is provided in Section 6.1, demonstrating the benefits of
collecting additional data alongside function run-times. For the purpose of this experiment,
a program that implements multiple sorting algorithms was chosen to show the dependence
of its performance on collected function arguments. The output of this experiment contains
visual representation of the collected data created with visualization methods introduced
in Section 5.3.

The second experiment described in Section 6.2 compares the new Tracer PIN engine to its
other realizations which leverage the SystemTap and eBPF instrumentation frameworks.
This experiment was conducted on a larger-scale project — CCSDS [1] compression program
that is suitable for this purpose thanks to its wide range of functions. The output of this
experiment is a comparison of the measured metrics of the execution of each engine, the
size of the profiles created and the functions flagged as the most time consuming by each
engine.

Machine specification. The experiments were conducted on a reference machine with
the following specification:

0S Fedora 34
Kernel 5.7.17
Arch x86_64

CPU Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
RAM 32GB DDR3 @ 1600MHz
SSD 500GB Samsung SSD 840 @ 6Gb/s

6.1 Case Study #1: Impact of Increased Granularity

Evaluation of the new Tracer engine functionality, introduced in this thesis, strives to prove
the benefits of obtaining additional information regarding the SUT to put the collected
data into better context, and ultimately improve its analysis. This experiment also verifies
the functionality of the data collection process utilizing both the arguments and basic block
collection. The program used for this purpose implements multiple sorting algorithms (e.g.

34

Heap sort or Quick sort), along with an émproper implementation of a Quick sort to show
how beneficial the arguments and basic blocks collection is for identification of an improper
implementation.

Methodology. The experiments conducted for this evaluation of the new engine utilize
its collection of arguments and basic blocks at the same time. The collection was executed
five times, where first two executions act as a warm up phase—to ensure the stability
of the experiments, and therefore are excluded from the selection of the resulting data.
The resulting data were selected from the remaining three executions based on median of
the total execution time. The program used in this experiment executes different sorting
algorithms in sequence 300 times while creating a reverse sorted array with random length

from 20 to 200 elements for each of the sorting algorithms.

InsertSort InsertSort
int len
@ LI .
400000 - 400000 . - - .
< 300000 - < 300000 - - . . .
= =
© s © . . e o
£ o £ : . : .
c A £ . Wt a9 o N
2 200000 & 2200000 = =8 .. oLt .
c c t . 5
o Y 8 o K] o o . °
B o B . 2
f rs c F] N . .
=1 & =1 .. G
w ’:.h L . ., . Y 59
100000 P 100000 * e . et e .
“g,.-x . : . ..-'
o oC o)87 .. T
. -'“'-m"' . " ..: I N i °
-t . . st R o . eeete 0%
0 0 -
25 50 75 100 125 150 175 200 0 50 100 150 200 250 300
Argument value Execution
HeapSort HeapSort
int size
70000 70000
60000 60000 - .
£ 50000 & 50000 L — L
@ o 0 . * q
< 40000 & 40000 .t . et ee P
E E % . Dhad R L) .
c c i R o L
S S : : b 9¢
B 30000 3 30000 R — . .
c c O * . e e . . o
S S . 05 . . e
e . . N I LI e * - e
20000 Nl 20000 B SlE T
.-*"z.. 50 % o ° . ° '." e
. .""f” .. . o O i .
10000 -~ 10000 - et =
.!‘.w'»"’ '. . Yoo ’. . Ony . K ._.' .,
25 50 75 100 125 150 175 200 0 50 100 150 200 250 300
Argument value Execution

Figure 6.1: A visual comparison of having the values of function arguments available in
addition to function run-times, and having just the run-times alone.

35

QuickSort QuickSortBad

int count int count
70000 600000 ri
o
o
&
60000 500000 i
&
— — R
250000 SHPRE el .
o & © 400000)
£ o £ 3
g 40000 - g j."
= o = 300000 K
S s S &
3 30000 - Y 5 5
5 s 5 s
T ir (T 200000 v
20000 ol A
3 &
o 100000 o
10000 e L "
g e
0 : 0
25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Argument value Argument value
Partition BadPartition
int left int right int left int right
10000
1 16000
8000 14000
. 12000
G @
2 . =
© 6000 4 ©
2 ;‘; 2 10000
e 4 -
3 £ S 8000
£ 4000 - g
g I . 2 6000
> >
[T) w

4000 ¢
2000

2000

0 100 200 0 100 200 0 50 100 100 200
Argument value Argument value Argument value Argument value

Figure 6.2: A visual comparison of two implementations of Quick sort and an auxiliary
partitioning function used in the implementations. The graphs show increased complexity
in the improper implementation of Quick sort (QuickSortBad).

The dependence between an argument value and a run-time of a function is an information
obtained thanks to the collection of argument values shown in Figure 6.1 which presents
the impact of the arguments collection in this experiment. The additional information puts
significant amount of context to the collected data and shows the source of complexity of
a function. When comparing the collected data of the improper Quick sort implementa-
tion to its correct implementation in Figure 6.2, the increased complexity of the improper
implementation is easily visible.

Furthermore, the data collected regarding the basic blocks allows for analysis of time spent
exclusively in each function, because the basic block run-times provide more detail about
functions execution. This information proves to be beneficial when comparing the run-times
of functions in Figure 6.3 where the BadPartition (a part of the improper implementation

36

of a Quick sort) stands out as the most time consuming function. When compared to its
correct implementation (Partition function), the data shows significant differences.

Figure 6.3: A visual interpretation of the collected basic block data, showing that the ex-
clusive time spent in BadPartition function is significantly higher than any other function,
indicating the source of the performance issue. The large version of these images can be
found in Appendix B.

6.2 Case Study #2: Impact of Tracer Engines

The main goal of this experiment is to compare the performance of the newly implemented
Tracer engine that leverages the PIN framework to the existing implementations that lever-
age eBPF and SystemTap instrumentation frameworks. The JIT mode was chosen to
represent the PIN-based engine since the Probe mode currently does not reliably support
the basic functionality this experiment strives to compare. Moreover, this experiment veri-
fies the basic functionality of the resulting Tracer engine. The CCSDS compression program
was chosen for this experiment as a larger-scale program so that the comparison of engines
provides results comparable to real-world scenarios.

Methodology. The experiment conducted on the CCSDS compression program shares the
methodology foundation with the first experiment. For every engine realization, the CCSDS
program is executed five times (including the warm-up phase consisting of two executions)
for three input images with different sizes. The Perun produces a set of metrics for the
comparison, and a performance profile for each execution (excluding warm-up phase execu-
tions). This output is then analyzed, and based on the median of time spent in the engine,
the representing execution is chosen and its metrics are used to compare the engines.

When comparing the time metrics obtained in the experiment, the smallest input image,
presented in Table 6.1, shows that the PIN engine introduces significant instrumentation
performance improvement for smaller inputs, while providing the same results as other en-
gine implementations. However, further experimenting with larger CCSDS inputs shows that
the new engine’s instrumentation performs on par (See Table 6.2) or worse (See Table 6.3)

37

with the increased input complexity. This experiment also shows big differences between
Engine time and Instrumentation time for the engine based on the PIN framework when
compared to other engines. Both eBPF and SystemTap engines, however, feature optimiza-
tions of the output processing (such as parallel processing), whereas PIN engine does not
feature optimizations yet, which is a part of the future work for this engine.

The Profile size shows differences among the engines, although the profile is in a unified
format, the information stored in this format may vary from engine to engine. For exam-
ple, SystemTap engine stores call-order for each function and also exclusive time spent in
a function which, compared to eBPF-based engine and the new PIN-based engine, increases
the profile size size significantly. The size might also be influenced by functions detected
and instrumented by each engine. If one of the engine instruments a function that is called
substantial number of times, and the other engines fail to instrument this function, the
size of the resulting performance profile might increase for such engine. Every engine in
this experiment instrumented nearly the same amount of functions while flagging the same
function as the most time consuming, even though there are some differences among the
top three most time consuming functions.

metrics *"E"° PIN eBPF SystemTap
Total time 12.03s 13.58s 13.38s
Engine time 9.10s 10.75s 10.57s
Instrumentation time 1.59s 9.20s 4.55s
Profile size 3.4MB 1.4MB 4.4MB
Instrumented functions 68 64 72

bpe_encode bpe_encode bpe_encode

Top 3 func. names bpe_push_block bpe_encode_segment bpe_push_block

bpe_encode_segment_bit_plane_coding bpe_push_block bpe_encode_segment

56.00% 60.28% 70.69%
Top 3 func. times 55.46% 58.77% 70.51%
39.71% 39.30% 70.45%

Table 6.1: A comparison of the Tracer engines using the CCSDS compression program with
an image size of 112x112 pixels. The Total time represents the time of the whole process
from the start to the end of Perun execution. The FEngine time represents a portion of
the Total time taken by the given engine, and the Instrumentation time corresponds to the
instrumentation part of the engine’s execution.

Although, the implementation of PIN’s Probe mode is described in the Chapter 5, its
testing after the implementation and during this experiment uncovered inconsistency with
instrumentation after a routine. It requires creation of a PROTO' object based on the
instrumented routine which wasn’t entirely clear before the implementation and had to be
tested. However, even with proper information for creation of this prototype, PIN allows the
float and double data types only as return types for the prototype, and doesn’t support
them as arguments. This makes Probe mode viable only for certain functions that meet
the specified requirements and therefore hard to use for general instrumentation of routines
in Tracer engine.

'Prototype of a routine, see https://software.intel.com/sites/landingpage/pintool/docs/98484/
Pin/html/group__PROTO.html.

38

https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__PROTO.html
https://software.intel.com/sites/landingpage/pintool/docs/98484/Pin/html/group__PROTO.html

metrics \ 6P PIN eBPF SystemTap

Total time 42.50s 21.12s 27.93s
Collector time 37.77s 17.22s 21.39s
Instrumentation time 5.89s 10.38s 7.03s
Profile size 17MB 6.4MB 24MB
Instrumented functions 68 66 72
bpe_encode bpe_encode bpe_encode
Top 3 func. names bpe_push_block uint32_abs bpe_push_block
bpe_encode_segment_bit_plane_coding bpe_push_block bpe_encode_segment
66.83% 62.60% 73.28%
Top 3 func. times 66.55% 19.90% 73.09%
48.86% 19.46% 73.04%

Table 6.2: A comparison of the Tracer engines using the CCSDS compression program with
an image size of 256x256 pixels. The Total time, Engine time and the Instrumentation time
have the same meaning as described in Table 6.1.

metrics\e"gi"e PIN eBPF SystemTap
Total time 158.19s 45.65s 77.58s
Collector time 146.79s 38.34s 59.52s
Instrumentation time 21.05s 14.70s 15.51s
Profile size 66MB 23MB 93MB
Instrumented functions 68 69 72
bpe_encode bpe_encode bpe_encode
Top 3 func. names bpe_push_block uint32_abs bpe_push_block
bpe_encode_segment_bit_plane_coding bpe_encode_segment bpe_encode_segment
69.48% 63.65% 73.96%
Top 3 func. times 69.26% 20.52% 73.77%
50.49% 15.66% 73.72%

Table 6.3: A comparison of the Tracer engines using the CCSDS compression program with
an image size of 512x512 pixels. The Total time, Engine time and the Instrumentation time
have the same meaning as described in Table 6.1.

39

Chapter 7

Conclusion

This thesis presents an extension of the Performance Version System—Perun in form of
a new Tracer collector engine based on the PIN instrumentation framework. This newly
implemented engine features basic functionality of the existing Tracer engines, and further-
more extends the granularity of the collected data by implementing function arguments
collection and basic block run-times collection. The new information gathered by the PIN-
based engine can be manually analyzed by the user thanks to the two new visualization
techniques (based on the scatter plot and modified version of sunburst graph) introduced
in this work. All of the functional requirements set prior to implementing the new engine
were met, however, the utilization of the PIN’s Probe mode has some significant restrictions
which render it unstable.

The evaluation of the new engine features an experiment conducted on numerous sorting
algorithms to show the positive impact of collecting values of function arguments and its
interpretation with new visualizations. This experiment proved that the function arguments
can help analyze the source of complexity of a function, and that the basic block run-
times can help with locating the source of slowdown even further, while also estimating the
exclusive time spent in each function. Second experiment, conducted on a larger-scale image
compression program CCSDS, compares the basic functionality of the new Tracer engine
to the other engines based on eBPF and SystemTap instrumentation frameworks. The
PIN framework introduces significant performance improvement of instrumentation when
smaller input sizes are used, and comparable performance with larger inputs. Moreover,
each engine flagged the same functions as the most time consuming.

Future work. One of the main future goals will be the optimization of the PIN output
transformation to the Perun profile, which is now a major source of performance issues in
the new engine. The performance and memory usage could be further optimized by better
routine instrumentation filtering, which would reduce the number of unwanted instrumented
routines to minimum. Basic blocks collection could be improved by providing the user with
an easy way of connecting a basic block to the source code, as well as by approximating
the last instruction run-time, which could not be consistently instrumented due to the PIN
restrictions. The future work will also extend the set of collectible argument types beyond
the currently supported set of basic types.

40

Bibliography

[1] Lossless Data Compression, Recommended Standard: CCSDS 121.0-B-3.
Washington, DC, USA: The Consultative Committee for Space Data Systems,
August 2020.

[2] BENDERSKY, E. Pyelftools [online Github Repository]. [cit. 2022-04-23]. Available at:
https://github.com/eliben/pyelftools.

[3] BENDERSKY, E. User’s Guide [Online Github Repository Wiki]. [cit. 2022-04-23].
Available at: https://github.com/eliben/pyelftools/wiki/User’s-guide.

[4] BOKEH DEVELOPMENT TEAM. Bokeh: Python library for interactive visualization.
2018. Available at: https://bokeh.pydata.org/en/0.12.6/.

[5] BRUENING, D. L. Efficient, Transparent, and Comprehensive Runtime Code
Manipulation [online]. USA, 2004. [cit. 2022-01-30]. Dissertation. Massachusetts
Institute of Technology. Available at: https://dspace.mit.edu/handle/1721.1/30160.

[6] CALAVERA, D. and FONTANA, L. Linux Observability with BPF: Advanced
Programming for Performance Analysis and Networking. O’Reilly Media,
Incorporated, 2019. ISBN 9781492050209. Available at:
https://books.google.sk/books?id=--t1wwEACAAJ.

[7] CouN, R. Pin Tutorial [online]. 2009 [cit. 2022-05-06]. Presentation slides. Available at:
https://www.intel.com/content/dam/develop/external/us/en/documents/

pintutorial-academiasinica-1.ppt.

[8] DEVOR, T. Pin: Intel’s Dynamic Binary Instrumentation Engine [online]. 2013 [cit.
2022-01-30]. Presentation slides. Available at: https://www.intel.com/content/dam/
develop/external/us/en/documents/cgo2013-256675.pdf.

[9] FIEDOR, T. Perun: Lightweight Performance Version System [online Github
Repository]. [cit. 2021-12-18]. Available at: https://github.com/tfiedor/perun.

[10] F1EDOR, T. and PAVELA, J. Perun Documentation: Release 0.20.2. 2021. [online].
[cit. 2021-12-18]. Available at:

https://github.com/tfiedor/perun/blob/master/docs/pdf/perun.pdf.

[11] GREGG, B. Choosing a Linux Tracer (2015) [online]. [cit. 2022-01-30]. Available at:
https://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html.

[12] GREGG, B. BPF Performance Tools: Linux System and Application Observability.
1stth ed. Addison-Wesley Professional, 2019. ISBN 0136554822.

41

https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools/wiki/User's-guide
https://bokeh.pydata.org/en/0.12.6/
https://dspace.mit.edu/handle/1721.1/30160
https://books.google.sk/books?id=--tlwwEACAAJ
https://www.intel.com/content/dam/develop/external/us/en/documents/pintutorial-academiasinica-1.ppt
https://www.intel.com/content/dam/develop/external/us/en/documents/pintutorial-academiasinica-1.ppt
https://www.intel.com/content/dam/develop/external/us/en/documents/cgo2013-256675.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/cgo2013-256675.pdf
https://github.com/tfiedor/perun
https://github.com/tfiedor/perun/blob/master/docs/pdf/perun.pdf
https://www.brendangregg.com/blog/2015-07-08/choosing-a-linux-tracer.html

[13]

[14]

18]

[19]

[20]

[24]

[25]

[26]

HUNTER, J. D. Matplotlib: A 2D graphics environment. Computing in Science &
Engineering. IEEE COMPUTER, SOC. 2007, vol. 9, no. 3, p. 90-95. DOI:
10.1109/MCSE.2007.55.

KITWARE. CastXML [online Github Repository]. [cit. 2022-04-23]. Available at:
https://github.com/CastXML/CastXML.

KITWARE. GecXML [online]. [cit. 2022-04-23]. Available at: https://www.gccxml.org/.

KITWARE. Pygcczml [online Github Repository]. [cit. 2022-04-23]. Available at:
https://github.com/CastXML/pygccxml.

KRATKY, R., JAHODA, M., DOMINGO, D. and COHEN, W. SystemTap Beginners
Guide [online]. [cit. 2022-01-30]. Available at:
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/

systemtap_beginners_guide/index.

Levi, O. Pin - A Dynamic Binary Instrumentation Tool. Intel [online], 13. june
2012. 2021-10-28 [cit. 2022-04-24]. Available at: https://www.intel.com/content/www/

us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html.

LI1SCINSKY, M. Performance Analysis Based on Noise Injection. 2020. Master’s
Thesis. Brno University of Technology, Faculty of Information Technology.

Luk, C.-K., ConNn, R., MuTH, R., PATIL, H., KLAUSER, A. et al. Pin: Building
Customized Program Analysis Tools with Dynamic Instrumentation. SIGPLAN Not.
New York, NY, USA: Association for Computing Machinery. Jun 2005, vol. 40, no. 6,
p. 190-200, [cit. 2022-01-30]. DOI: 10.1145/1064978.1065034. ISSN 0362-1340.
Available at: https://doi.org/10.1145/1064978.1065034.

LUKAN, D. Pin: Dynamic Binary Instrumentation Framework [online]. [cit.
2022-01-30]. Available at: https://resources.infosecinstitute.com/topic/pin-
dynamic-binary-instrumentation-framework/.

MCcKINNEY, W. et al. Data structures for statistical computing in python. In:
Austin, TX. Proceedings of the 9th Python in Science Conference. 2010, vol. 445,
p- 51-56.

MEREY, A. What are BPF Maps and how are they used in stapbpf [online]. [cit.
2022-01-30]. Available at:
https://developers.redhat.com/blog/2017/12/15/bpf-maps-used-stapbpf#.

MICHAEL J. EAGER, E. C. Introduction to the DWARF Debugging Format [online].
April, 2012 [cit. 2022-05-06]. Available at: https://dwarfstd.org/doc/DWARF4.pdf.

NicHOLAS NETHERCOTE, J. S. Valgrind: A Framework for Heavyweight Dynamic
Binary Instrumentation. [online]. 2007, [cit. 2022-01-30]. Available at:
https://valgrind.org/docs/valgrind2007.pdf.

PAVELA, J. Data structures profiling library for C/C++ programs. 2017. Bachelor’s
Thesis. Brno University of Technology, Faculty of Information Technology.

42

https://github.com/CastXML/CastXML
https://www.gccxml.org/
https://github.com/CastXML/pygccxml
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/systemtap_beginners_guide/index
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/6/html/systemtap_beginners_guide/index
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-dynamic-binary-instrumentation-tool.html
https://doi.org/10.1145/1064978.1065034
https://resources.infosecinstitute.com/topic/pin-dynamic-binary-instrumentation-framework/
https://resources.infosecinstitute.com/topic/pin-dynamic-binary-instrumentation-framework/
https://developers.redhat.com/blog/2017/12/15/bpf-maps-used-stapbpf#
https://dwarfstd.org/doc/DWARF4.pdf
https://valgrind.org/docs/valgrind2007.pdf

[27] PAVELA, J. Efficient techniques for program performance analysis. 2020. Master’s
Thesis. Brno University of Technology, Faculty of Information Technology.

[28] SRINIVASARAGHAVAN, R. Exploring the DWARF debug format information. [online].
august 2013, [cit. 2022-05-06]. Available at:
https://valgrind.org/docs/valgrind2007.pdf.

[29] STUPINSKY Simon. New models for automatic detection of performance degradation.
2019. Bachelor’s Thesis. Brno University of Technology, Faculty of Information
Technology.

[30] WaskoMm, M. L. Seaborn: statistical data visualization. Journal of Open Source
Software. The Open Journal. 2021, vol. 6, no. 60, p. 3021. DOI: 10.21105/joss.03021.
Available at: https://doi.org/10.21105/j0ss.03021.

43

https://valgrind.org/docs/valgrind2007.pdf
https://doi.org/10.21105/joss.03021

Appendix A

Contents of the included storage
media

/
perun/.........oiiiiian... Perun implementation along with the PIN Tracer engine
pin-3.22.......... ..., PIN kit
example-programs/ Programs for functionality testing
vm-files/oun.n. Files for setup of virtual machine with perun pre-installed
README.md Useful information about the storage medium content
thesis-source/.......... TEX source code of this thesis

xmocar00-thesis.pdf/...Digital version of this thesis

44

Appendix B

Basic Block Visualization
Examples

Basic block time

Basic Blocks
TOP1

Function time W TOP3
_0% R m TOP5

Figure B.1: An example of the visualization of collected data regarding functions and their
individual basic blocks featuring all of the functions of the tested program and some of the
most time expensive basic blocks time consumed.

45

Basic block executions

Basic Blocks
W TOP1
m TOP2
Functi i W TOP3
unction executions B TOP4
0% 100% m TOPS
° “ k-
rTop.

Figure B.2: An example of the visualization of collected data regarding functions and their
individual basic blocks featuring all of the functions of the tested program and some of the
most time expensive basic blocks and their executions. Paired with B.1

46

Basic block time

Basic Blocks
Function time = ;8;;
[& - W TOP3
(¥ m TOP4

Figure B.3: An example of the visualization of collected data regarding functions and

their individual basic blocks featuring top 6 most time consuming functions sorted by time
including their top 4 basic blocks.

47

Basic block executions

Basic Blocks
Function executions = $8I|:%
& - m TOP3
0% 100% m TOP4

Figure B.4: An example of the visualization of collected data regarding functions and their
individual basic blocks featuring top 6 most executed functions sorted by time including
their top 4 basic blocks. Paired with B.3

48

Basic block time

Basic Blocks
W TOP1
W TOP2
Function time | W TOP3

s f— W TOP4
0% mTOP5

Figure B.5: A visual interpretation of the collected basic block data, showing that the ex-

clusive time spent in BadPartition function is significantly higher than any other function
indicating the source of the performance issue.

49

Basic block executions
100%
- o
‘m

-

Basic Blocks

W TOP1
m TOP2

Function executions

0% 100%

Figure B.6: A visual interpretation of the collected basic block data, showing the executions
of functions. Paired with B.5

50

	Introduction
	Perun
	Overview
	Architecture
	Tracer Collector

	PIN Framework
	Overview
	Pintools
	JIT and Probe Modes
	Using PIN in Perun's Tracer Engine

	Analysis of Requirements
	The Resulting Functionality
	Functional Requirements
	Non-functional Requirements

	Design and Implementation
	Tracer PIN Engine
	Tracer Engine Interface
	Pintool and Makefile
	Transforming PIN Output Into the Perun Profile

	Extending the PIN Engine
	Arguments Collection
	Basic Block Run-times

	Visualizations

	Experimental Evaluation
	Case Study #1: Impact of Increased Granularity
	Case Study #2: Impact of Tracer Engines

	Conclusion
	Bibliography
	Contents of the included storage media
	Basic Block Visualization Examples

