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Abstract
Static analysis has nowadays become one of the most popular ways of catching bugs early
in the modern software. However, reasonably precise static analysis tools still often struggle
to scale well on large and quickly changing codebases. Efficient static analysers, such as
Coverity or Code Sonar, are usually proprietary and difficult to openly evaluate or
extend. On the contrary, Facebook Infer offers an open source static analysis framework
with the emphasis on compositional, incremental and consequently highly scalable inter-
procedural analysis. This thesis presents Looper — a new performance oriented resource
bounds analyser which extends the capabilities of Facebook Infer. We have based our
implementation on an existing resource bounds analyser Loopus and evaluated it on two
different test suites, showing encouraging results in comparison with the existing Cost
analyser developed by the Infer team.

Abstrakt
Statická analýza se v současnosti dostává do popředí v oblasti technik pro odhalování chyb
v moderním software. Nedostatečná škálovatelnost — především v kombinaci se zachováním
potřebné přesnosti — je však přetrvávající problém u většiny současných nástrojů pro stat-
ickou analýzu, což je činí nepoužitelnými v případě rozsáhlého a často se měnícího kódu.
Efektivní statické analyzátory, jako například Coverity nebo Code Sonar, jsou navíc
často proprietární a není tedy možné je jednoduše rozšířit nebo srovnávat jejich výsledky.
Oproti tomu Facebook Infer nabízí open source rámec s důrazem na kompoziční, inkre-
mentální, a v důsledku i škálovatelnou inter-procedurální statickou analýzu. Tato práce
představuje Looper — nový analyzátor zaměřující se na analýzu výkonnosti, přesněji na
analýzu mezí, rozšiřující rámec nástroje Facebook Infer. Implementace našeho analyzá-
toru je založena na existujícím nástroji Loopus, který se zaměřuje na přesnou analýzu
mezí. Výsledný prototyp jsme otestovali na dvou různých testovacích sadách a povzbudivé
výsledky srovnali s existujícím analyzátorem Cost, který je vyvíjen Infer týmem.
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Rozšířený abstrakt
Zákeřné chyby ukrývající se na nečekaných místech a způsobující závažné škody jsou bo-

hužel neodmyslitelnou součástí vývoje softwaru již od nepaměti. V reakci na tento problém
se výzkumníci v několika posledních desetiletích zabývali vývojem nových nástrojů, které
by — když už ne eliminovali — tak alespoň omezily vznik nových chyb v kritickém softwaru.
Většina pozornosti se ovšem v minulosti upínala zejména k vývoji nástrojů pro odhalování
tzv. funkčních chyb, které mohou přímo ovlivnit schopnost programu vykonávat jeho za-
mýšlenou funkci.

Výkonnostní chyby byly až donedávna vnímány jako méně kritické a obdobné nástroje
pro odhalování těchto chyb byly proto rozvíjeny pomaleji. To vedlo k nedostatku spo-
lehlivých nástrojů ve chvíli, kdy se začalo ukazovat, že závažnost výkonnostních chyb je
srovnatelná s chybami funkčními. V extrémních případech mohou tyto chyby vést prakticky
k nepoužitelnosti programů, zejména při práci s větším objemem (a nebo jiným typem) dat,
než bylo očekáváno. Takové chování je nepřijatelné, zejména dnes, kdy se klade velký důraz
na dobrou uživatelskou zkušenost.

Pro odhalování těchto chyb v raných fázích vývoje se dnes nejčastěji používají rozsáhlé
automatické testy a nástroje pro dynamickou analýzu — například profilaci. Přes jejich
nespornou užitečnost se úspěšnost automatických testů přímo odvíjí od kvality a počtu
manuálně tvořených testovacích případů, přičemž nástroje pro profilaci jsou schopny poskyt-
nout výkonnostní charakteristiky pouze pro konkrétní použitá vstupní data. Výkonnostní
chyby se ovšem dle [7] nejčastěji projevují až v pozdějších fázích vývoje, případně až při
nasazování finálního produktu, např. kvůli rozdílům mezi očekávanou a skutečnou zátěží.
Přístupy založené na dynamické analýze jsou tedy ve výsledku v mnoha případech dostaču-
jící, ale stále je zde riziko, že mnoho chyb zůstane neodhalených. Zároveň pak tyto techniky
neposkytují záruky o jakýchkoliv vlastnostech analyzovaného programu.

Statická analýza představuje odlišný přístup, který ve většině případů nevyžaduje žád-
nou dodatečnou manuální obsluhu a může být použit i v počátcích vývoje, jelikož nezávisí
na tom, zda je program spustitelný. Nicméně i statická analýza má své problémy, jako
například tradiční vysokou míru falešných pozitiv a zejména přetrvávající problém se škálo-
vatelností, který sužuje většinu současných nástrojů a činí je nepoužitelnými v případě
rozsáhlého a často se měnícího kódu.

V reakci na tento problém Facebook nedávno představil vlastní nástroj pro efektivní
odhalování chyb a verifikaci programů, nazvaný Facebook Infer — kompoziční, inkremen-
tální a v důsledku tedy i vysoce škálovatelný rámec pro abstraktní interpretaci [15], který je
uzpůsoben pro rychlou integraci nových inter-procedurálních analyzátorů. Zmíněný nástroj
byl již nasazen a aktivně se používá ve společnosti Facebook (a v několika dalších, jako
například Spotify, Uber nebo Mozilla), přestože se stále nachází ve fázi rychlého vývoje.
V současnosti již disponuje rozmanitou řadou analýz, například pro verifikaci přetečení
zásobníku, bezpečnosti u vícevláknových programů nebo úniku zdrojů.

Infer bohužel v současnosti stále zaostává v oblasti výkonnostních chyb. Jediný výkon-
nostně zaměřený analyzátor Cost (představen Infer týmem v průběhu naší práce) imple-
mentuje pouze upravenou verzi tzv. worst-case execution time (WCET) analýzy. Tento
typ analýzy ovšem poskytuje pouze těžko interpretovatelnou a často (v případě složitějších
algoritmů zahrnujících amortizovanou složitost) poměrně nepřesnou numerickou mez na čas
potřebný k vykonání programu.

Loopus [12] je analyzátor mezí, který je schopen — dle našeho nejlepšího vědomí —
jako jediný analyzovat amortizovanou složitost u široké škály programů. Loopus nicméně
provádí pouze intra-procedurální analýzu a samotný nástroj (bez inkrementálního rámce)



není vhodný pro rozsáhlý a rychle se měnící kód. Tato práce proto představuje Looper —
analyzátor mezí reimplementující Loopus v rámci nástroje Infer, což otevírá nové možnosti
pro ještě efektivnější analýzu.

Stěžejním konceptem nástroje Loopus je použití abstraktního modelu nazvaného dif-
ference constraint program (DCP). Jedná se o graf, jehož hrany jsou popsány pomocí
nerovností tvaru 𝑥 ≤ 𝑦 + c, kde 𝑥 a 𝑦 jsou celočíselné výrazy sestavené nad proměnnými
programu a c ∈ Z je numerická konstanta. Tyto nerovnosti, nazývané jako difference con-
straints (DC), jsou schopny modelovat velkou část imperativních programů s celočíselnými
počítadly cyklů. Loopus je schopen na základě této reprezentace analyzovat meze po-
mocí vzájemné rekurze dvou procedur 𝑇ℬ(𝜏) a 𝑉 ℬ(a). Procedura 𝑇ℬ(𝜏) slouží k výpočtu
horní meze počtu provedení konkrétního DCP přechodu 𝜏 sledováním kolikrát a o kolik se
může zvýšit hodnota celočíselného výrazu, který přímo limituje počet souvislých provedení
přechodu 𝜏 . Procedura 𝑉 ℬ(a) aplikuje podobný princip na výpočet horní meze hodnoty
konkrétní DCP proměnné a. Vzájemným propojením těchto dvou procedur je možné ses-
tavit algoritmus pro výpočet horních mezí celkového počtu provedení libovolného přechodu
𝜏 . V našem případě sledujeme tzv. zpětné hrany, které navracejí tok programu zpět k hlav-
ičce cyklu po ukončení iterace. Sečtením horních mezí jednotlivých provedení všech zpět-
ných hran programu získáváme celkovou cenu, která přímo reflektuje jeho asymptotickou
složitost.

Výsledný prototyp jsme otestovali na dvou různých testovacích sadách a s povzbudivými
výsledky srovnali s existujícím analyzátorem Cost, který je vyvíjen Infer týmem. Navazu-
jící práce se bude zaměřovat zejména na rozšíření původního intra-procedurálního konceptu
směrem ke škálovatelné inter-procedurální analýze při zachování rozumné přesnosti. Dalším
cílem je implementace zbývajících rozšíření prezentovaných v [12], či návrh systému, který
by byl schopen monitorovat změny výkonnostních charakteristik jednotlivých funkcí mezi
různými revizemi programu.
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Chapter 1

Introduction

Subtle bugs hiding in unexpected places and causing significant damage when triggered
are an inherent part of software ever since the inception of the programming discipline.
In response to this problem, researchers in the last few decades focused their attention on
developing new tools with the primary goal of reducing the number of bugs or even proving
their absence in critical software. However, most of the attention was drawn towards the
field of the so called functional bugs which can directly affect the ability of a program to
perform the intended function.

Until recently, performance bugs were not regarded as critical and remained at the
sidelines of research, resulting in a lack of reliable tools when it became apparent that the
severity of performance bugs is comparable to the severity of functional ones. In extreme
cases, these bugs can turn otherwise correct programs into unusable pieces of software
when met with an unexpected amount and/or pattern of input data. This behaviour is
unacceptable especially with today’s emphasis on great user experience.

The current widespread approach is to employ extensive automated testing and leverage
dynamic analysis tools such as profilers in order to catch bugs early in the development
process. However, despite their undisputed usefulness, the capabilities of automated testing
are directly tied to the quality of manually written tests and profilers are able to provide
performance characteristics related to a specific input data only. Unfortunately, according
to [7], performance bugs tend to manifest in later development stages or upon deployment
due to previously unanticipated workload. In conclusion, approaches based on dynamic
analysis are sufficient in many cases but can sometimes still miss too many errors and
cannot provide any conclusive claims about certain properties of a program.

Static analysis offers an alternative solution which usually does not require any addi-
tional user input and can be easily employed in early development stages as it does not rely
on the executability of a program. However, even static analysis has its own shortcomings
such as a traditional high rate of false positives, and, most notably, a prevailing problem
with scalability which plagues most of the current tools and renders them unusable for large
and quickly changing codebases.

In response, Facebook has recently proposed its own solution for efficient bug finding and
program verification called Facebook Infer — a compositional, incremental [9], and conse-
quently highly scalable abstract interpretation [15] framework suitable for quick integration
of new inter-procedural analyses. Although still rapidly developing, it is already deployed
in Facebook (and several other companies, such as Spotify, Uber, or Mozilla) and offers
a wide range of analyses, e.g., for verification of buffer overflow, thread safety, or resource
leakage.
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Unfortunately, Infer currently lacks analyses focused on the mentioned performance-
based bugs. The only performance-based Cost analyser (introduced by Infer in the course
of our work) implements a modified worst-case execution time (WCET ) analysis only. How-
ever, this analysis provides a numerical bound on the time required for the execution of
a program only, which can be hard to interpret, and, above all, it is quite imprecise for
more complex algorithms, e.g., requiring amortized reasoning.

Loopus [12] is a powerful resource bounds analyser, which, to the best of our knowledge,
is the only one that can handle the amortized complexity for a broad range of programs.
However, it is limited to intra-procedural analysis only, and the tool itself (without an
incremental framework) is not suitable for large and quickly changing codebases. Hence,
in this work we propose Looper — a resource bounds analyser that recasts the powerful
Loopus within Infer, enabling the possibility for a more efficient analysis. The experimental
evaluation shows encouraging results, when even our immature implementation inferred
precise bounds for selected benchmarks.

This work was supported by H2020 ECSEL project Aquas; we hereby thank for the
received support.

Structure of this work. The rest of this work is structured as follows: Chapter 2
introduces the theory of abstract interpretation technique in static analysis and demon-
strates its key concepts on a simple example. Chapter 3 provides a general overview of
the Facebook Infer tool with an emphasis on how Infer achieves the scalability with its com-
positional inter-procedural analysis. Chapter 4 introduces the existing Loopus tool and
provides a high level overview of the key concepts and ideas without any formal definitions
or proofs of soundness. The follow-up Chapter 5 discusses the current state of imple-
mentation which is based on the key concepts from previous chapter. Further, Chapter 6
presents the encouraging results of our experimental evaluation conducted on two different
test suites. Finally, Chapter 7 discusses the possibilities for future work and concludes
this thesis.
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Chapter 2

Abstract Interpretation

Abstract interpretation (AI) was originally formalized by a French computer scientist
Patrick Cousot and his wife Radhia Cousot in the 1970s [4]. The theory of AI provides
a general framework which can be utilized in the process of creating specific static analyses.
New analyses can be obtained by instantiating of the necessary components to the general
framework.

Even though the AI technique falls into the domain of static analysis of programs it
actually executes instructions of analyzed program in a sense. However, the key difference
is how we interpret those executed instructions. We basically assign abstract semantics
over an abstract domain to each concrete instruction and tailor the domain for the specific
needs of our analysis based on its area of focus.

Abstract semantics of an instruction are then applied to the abstract context which is
used to represent a program state at a certain location. The actual physical execution of the
program instructions is thus completely avoided which means that the AI preserves all the
advantageous properties of static analysis. A state space of a program can subsequently be
reduced significantly just by choosing the appropriate level of abstraction for the problem
at hand and devising corresponding abstract domain and abstract transformers.

The Facebook Infer tool provides a scalable framework for static analysis based on
AI (Infer.AI). The scalability is achieved by following the principles of compositionality
allowing Infer to perform incremental analysis which can be run on individual code changes.

2.1 Components of the Abstract Interpretation
Each new type of analysis has to define few essential components required by the general
abstract interpretation framework. These components create the semantics of our analysis:

∙ Abstract domain: a set of abstract states. An abstract state represents a program
state at a certain program location. The content of an abstract state varies depending
on a specific type of analysis. A trivial example might be an interval domain tracking
safe lower and upper bounds of integer program variables, i.e., [𝑎, 𝑏] where 𝑎 ∈ Z ∪
{−∞}, 𝑏 ∈ Z ∪ {∞}, ⊤ = (−∞,∞) and ⊥ = (𝑎, 𝑏) for 𝑎 = 𝑏. The ⊤ symbol denotes
the top element of the underlying lattice as all existing intervals are contained in
the (−∞,∞) interval. The ⊥ symbol denotes the bottom element of the underlying
lattice which is an empty interval. The integer sets for lower and upper bounds are
extended by infinities because it is not always possible to determine precise bounds
and interval over-approximation is necessary if we aim for a sound static analysis.
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∙ Abstract transformers: each instruction from program’s source code has assigned
transformer which transforms the original semantics of an instruction to abstract
semantics which can be applied on an abstract state. For example, we would need
to transform the integer arithmetic of a concrete program to the interval arithmetic
applicable in our previously introduced interval domain. E.g., increment to variable
𝑖 represented by the [𝑎, 𝑏] interval would lead to new interval [𝑎 + 1, 𝑏 + 1] and the
assignment 𝑖 = 0 would lead to [0, 0].

∙ Join operator: combines multiple abstract states into a new one. Joins are used
at program junctions where several program branches merge together. Join in the
interval domain can be defined as: [𝑎, 𝑏] ∘ [𝑐, 𝑑] = [min(𝑎, 𝑐),max(𝑏, 𝑑)].

∙ Widening: applied on a sequence of abstract contexts at a certain program location
(for example loop headers) in order to accelerate fixpoint calculation. However, accel-
erated fixpoint computation by means of widening usually has a trade-off in a form of
precision loss. Widening in the interval domain can be defined as: [𝑎0, 𝑏0]O[𝑎1, 𝑏1] =
[if 𝑎1 < 𝑎0 then −∞ else 𝑎0, if 𝑏1 > 𝑏0 then ∞ else 𝑏0], where both intervals
collide at the same loop header after two consecutive iterations of a loop.

∙ Narrowing: can be used in order to refine the result of widening operation. Some
analyses do not require to define the narrowing operation. Narrowing in the interval
domain can be defined as: [𝑎0, 𝑏0] M [𝑎1, 𝑏1] = [if 𝑎0 = −∞ then 𝑎1 else 𝑎0, if
𝑏0 =∞ then 𝑏1 else 𝑏0].

2.2 Formal Definition
The abstract interpretation is based on notion of a mathematical structure called semilat-
tice [14], which is defined as follows:

∙ Partially ordered set (𝐴,≤𝐴) is a semilattice if each non-empty, finite subset 𝐵 of 𝐴
has a least upper bound in 𝐴.

∙ Partially ordered set (𝐴,≤𝐴) is a complete semilattice if each subset 𝐵 of 𝐴 has a least
upper bound in 𝐴.

The abstract interpretation 𝐼 of a program 𝑃 with the instruction set Instr is a tuple:

𝐼 = (𝑄, ∘,⊑,⊤,⊥, 𝜏) ,

where

∙ 𝑄 is a abstract domain, i.e., domain of abstract states,

∙ ⊤ ∈ 𝑄 is the least upper bound of 𝑄,

∙ ⊥ ∈ 𝑄 is the greatest lower bound of 𝑄,

∙ ∘ : 𝑄×𝑄→ 𝑄 is the binary join operator,

∙ (⊑) ⊆ 𝑄 × 𝑄 is an ordering defined as 𝑥 ⊑ 𝑦 ⇐⇒ 𝑥 ∘ 𝑦 = 𝑦 in (𝑄, ∘,⊤) which is
a complete semilattice.

∙ O : 𝑄×𝑄→ 𝑄 is the binary widening operator with following properties:
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– ∀𝐶,𝐷 ∈ 𝑄 : (𝐶 ∘𝐷) ⊑ (𝐶O𝐷),
– For all infinite sequences (𝐶0, . . . , 𝐶𝑛, . . .) ∈ 𝑄𝜔, it holds that the infinite se-

quence (𝑠0, . . . , 𝑠𝑛, . . .) defined recursively as:

𝑠0 = 𝐶0, 𝑠𝑛 = 𝑠𝑛−1O𝐶𝑛

is not strictly increasing,

∙ M: 𝑄×𝑄→ 𝑄 is the binary narrowing operator with following properties:

– ∀𝐶,𝐷 ∈ 𝑄 : 𝐷 ⊑ 𝐶 ⇒ (𝐷 ⊑ (𝐶 M 𝐷) ⊑ 𝐶),
– For all infinite sequences (𝐶0, . . . , 𝐶𝑛, . . .) ∈ 𝑄𝜔, it holds that the infinite se-

quence (𝑠0, . . . , 𝑠𝑛, . . .) defined recursively as:

𝑠0 = 𝐶0, 𝑠𝑛 = 𝑠𝑛−1 M 𝐶𝑛

is not strictly decreasing.

2.3 Fixpoint Approximation
Abstract interpretation is based on the principle of program execution in the abstract
domain which substantially reduces the number of possible program states. However, the
underlying theory is based on the notion of lattices and computing of fixpoints, i.e., we
gradually apply abstract transformers on states, until we do not produce any new ones.
Fixpoint is an element 𝑎 ∈ 𝐴 of a function 𝑓 :→ 𝐴 over a semilattice (𝐴,≤𝐴) with a function
value equal to 𝑎 itself, e.g., 𝑓(𝑎) = 𝑎 holds.

Computing of precise fixpoints is generally not guaranteed to terminate in acceptable
or even finite time. Those cases mostly comprise of loops where it is usually impossible to
avoid some kind of fixpoint approximation in order to guarantee the termination. Widening
provides solution to this problem as it can be used to over-approximate the fixpoint and thus
guarantee the termination in finite time at the expense of precision. It can also be followed
by a subsequent narrowing operation which might provide more precise approximation.
Both operations are optional and general abstract interpretation framework does not require
their presence but at least widening is convenient if we aim for efficient analysis focused on
real world code. The following example with a loop demonstrates all introduced concepts:

𝑙1 : x = 0;
𝑙2 : while (x < n) {
𝑙3 : x++;
𝑙4 : }

𝑙1 : 𝑥1 = [0, 0] 𝑙3 : 𝑥2 = [1, 1] 𝑙2 : 𝑥3 = 𝑥1 ∘ 𝑥2 = [0, 1]

𝑙3 : 𝑥4 = [1, 2] 𝑙2 : 𝑥5 = 𝑥1 ∘ 𝑥4 = [0, 2] 𝑙2 : 𝑥6 = 𝑥1O𝑥5 = [0,∞)

𝑙3 : 𝑥7 = [1,∞) 𝑙2 : 𝑥8 = 𝑥1 ∘ 𝑥7 = [0,∞) 𝑙2 : 𝑥6 = 𝑥8 = 𝐹𝑃

𝑙4 : 𝑥𝑒𝑛𝑑 = 𝑥8 M 𝑥𝑓𝑎𝑙𝑠𝑒 = [0,∞] M (−∞, 𝑛] = [0, 𝑛]

Table 2.1: A calculation of the [0,∞) fixpoint requiring the widening operation and sub-
sequent refinement with the narrowing operation. Variable 𝑥𝑖 corresponds to the 𝑖th step
of the fixpoint computation. Each step is listed with location of instruction which was
abstractly executed.
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Chapter 3

Facebook Infer

Infer is an open-source static analysis framework developed by the Facebook Infer team
and implemented mainly in OCaml. Its main advantage over the most of the other existing
tools is the ability to discover interprocedural bugs in a scalable manner through the use
of the so called function summaries.

Infer was originally a standalone analyser focused on finding of memory safety violations
such as the dereferencing of null pointers or memory leaks. It has made its breakthrough
thanks to the influential paper [3] presenting logical concept called bi-abduction which
composes the static analysis in a scalable manner. Bi-abduction is a form of logical inference
mainly for separation logic which is a novel kind of mathematical logic. Separation logic
itself made a huge impact on a way how one can reason about computer memory and was
one of the key reasons why the original shape analysis could scale.

Since then, Infer has evolved into a general abstract interpretation framework that can
be used to quickly develop new kinds of modular interprocedural analyses. At the core of
each interprocedural analysis stands an intraprocedural analysis that computes a summary
for a single procedure. Abstract interpretation framework can then leverage those sum-
maries at the call sites of previously analysed functions and use them to lift the analysis to
the interprocedural and compositional level. As a consequence of compositionality it is also
incremental which means that it can be run only on code changes instead of entire codebase.
This property is especially critical for analyses that will be run on large codebases where
complete re-analysis on each code change would be unfeasible for real world application
which is what Infer aims for.

Infer currently consists of three main parts: AI, AL and SL. The AI refers to the
aforementioned abstract interpretation framework, AL is a framework for basic syntax
linters and SL refers to the original separation logic based analysis. The AI framework
currently supports analysis of C, C++, Objective-C and Java programs and provides a wide
range of analyses each focusing on different bug types. List of more matured analyses
includes for example Inferbo (buffer overrun checker), RacerD (data races) or Starvation
(concurrency starvation and some types of deadlocks).

3.1 Infer.AI
Infer.AI is an abstract interpretation framework implemented inside the Infer tool. It
provides basic infrastructure as well as great number of facilities that simplify the develop-
ment process of new analysers such as automatic HTML logging and formatting or various
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OCaml modules for easier expression parsing and pattern matching. Infer.AI can be used
to implement simple intraprocedural analyses which can be converted to interprocedural
analyses just by adding some boilerplate code that enables usage of function summaries.

3.1.1 Framework Architecture

Figure 3.1 presents a simplified block diagram of the framework architecture consisting of
three main components. The first main component is the frontend. Its job is to leverage
the underlying LLVM compiler infrastructure to compile analysed program from its source
language to so called Smallfoot Intermediate Language (SIL): the low-level intermediate
language used by Infer.AI framework during the analysis.

Figure 3.1: Architecture components

Frontend provides an output in form of a Control Flow Graph (CFG) for each analysed
procedure and also another higher level interprocedural CFG for each source file, i.e., a file
specific call graph. Frontend is able to generate variety of different procedure CFG types
such as normal, exceptional with exceptional flow for languages with exceptions or backward
(reversed direction). This approach is more flexible and gives the developer more options
to choose from based on the needs of specific analysis.

Each node of the procedure CFG contains a list of SIL instructions that will be in-
terpreted by abstract interpreter implemented in the framework. We can list four main
instructions:

∙ LOAD — loads value from an address denoted by an expression into a temporary iden-
tifier. Address expression can be either a program variable or, e.g., more complex
expression that includes array indexing,

∙ STORE — stores value of an expression into a place denoted by an address expression
(same as with LOAD instruction). Value expression consists of constants and temporary
identifiers created by previous LOAD instructions,

∙ CALL — represents a function call. Creates a new temporary identifier for a possible
return value and provides information about return type, types of parameters and
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call flags. Note, that indirect function calls are handled by a combination of LOAD
and CALL instructions,

∙ PRUNE — splits the control flow into two new branches based on possible results of
a boolean expression. This instruction is interpreted after the split which means it is
interpreted twice, once for the true branch and once for the false branch.

Infer also supports analysis over another higher level intermediate language called HIL which
is built on top of SIL. Even though HIL is simpler than SIL and has only three instructions
it is sufficient for the needs of the most of the analyses. However it is not suitable for
analyses that focus on memory bugs and work with pointers on regular basis, contrary to
SIL which is more appropriate.

The frontend module and the use of the intermediate language allows us to write new
analyses with minimal language specific logic and in turn we can run one analysis on
programs written in multiple programming languages.

The second main component of the architecture is scheduler which determines the suit-
able order of analysis of each procedure based on a call graph. Scheduler is especially
important for interprocedural analysis where order in which procedures are analysed really
matters. We will explain this problem in more detail in the Section 3.3. A procedure
is analysed once it is chosen by the scheduler and returns a summary which is stored in
the results database. This way, a procedure summary can be retrieved from a database
and instantiated repeatedly at different call sites. Moreover, the use of a database storage
allows Infer to be incremental. Scheduler is also able to determine which procedures are
independent and, hence, can be analysed concurrently. Infer can then be run in a heavily
parallelized manner — one of the reasons for its high scalability.

The last main component is the parameterized abstract interpreter which must be in-
stantiated by every analyser and performs the actual analysis of each procedure. New
instance of abstract interpreter must be provided with an aforementioned type of proce-
dure CFG and a module implementing custom transfer functions for each SIL instruction.
Effect of these transfer functions is applied to abstract states for a custom abstract do-
main. Infer does not impose any restrictions on the contents of an abstract domain and the
only requirement is that it must provide implementation for join and widen operations and
a comparator for abstract states which creates an ordering. In addition it must also define
a data structure representing abstract state.

3.2 Intraprocedural Analysis
Intraprocedural analysis is an analysis that ignores the nested calls of other procedures.
It focuses on a single procedure at a time and out of context of its call sites. As a result
it has quite limited ability to reason about the program as a whole and can only provide
a knowledge about its procedures limited to their scope. For example, it is not possible to
provide additional preconditions based on the context of specific call site and at the other
end postconditions are of no value to the caller.

Figure 3.2 describes the process of the intraprocedural analysis in Infer. The abstract in-
terpreter analyses a single procedure using two main components: the command interpreter
and the control interpreter. The command interpreter interprets SIL or HIL instructions
over input abstract states and produces new output states. The interpretation is a process
of applying the corresponding transfer function to the input state which produces a new
output state. The control interpreter receives this updated state and continues with next
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Figure 3.2: The process of intraprocedural analysis in Infer. The command interpreter
applies transfer functions to input abstract states and produces output states. The control
interpreter chooses the inputs based on a CFG.

instruction based on the procedure CFG. Both components together form the main analysis
loop which repeats until it processes all instructions or finds a fixpoint in case of a program
loop. These parts of the abstract interpreter have access to transfer functions and a valid
domain implementing necessary operations and defining abstract state.

Modularity of the AI framework is ensured by the parametric command interpreter
which changes behaviour based on the currently plugged set of transfer functions. This
approach makes the process of creating new analyses easy as there is no need to change
command interpreter every time we decide to add new analysis. Hence, we can create
new intraprocedural analysis in three steps: (1) we choose type of procedure CFG, (2) we
design abstract domain, and finally (3) we implement transfer functions. Individual parts
are passed to the new abstract interpreter instance that stitches everything together and
exposes various functions that perform different tasks related to the analysis.

3.3 Interprocedural Analysis
Unlike intraprocedural analysis, interprocedural analysis can discover bugs caused by inter-
actions between procedures and does take call site context into account. Postcondition of
a called procedure changes based on its preconditions w.r.t. the current state of a program
at specific call site. But in interprocedural analysis postconditions can also affect state of
the caller via return value or pointer parameters.

Infer uses two different approaches to achieve interprocedurality. The first is based
on bi-abduction theory and is employed in the original separation-logic based analyser.
Bi-abduction allows Infer to break one large memory analysis of a whole program into
smaller independent analyses of individual procedures. In general, it is a technique that
allows Infer to automatically deduce preconditions and postconditions for a procedure by
symbolic execution of its code. It is one of the reasons why the original analyser scales so
well.
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The second approach to interprocedural analysis is based on the notion of summaries
and is employed in the AI framework. Summary as a general concept is a data structure
that stores relevant information about the analysed procedure. In most cases, it contains
collection of conditions over the formal parameters of a procedure. Subsequent violation
of those conditions at specific call site with concrete arguments can then be considered
as a bug. However, summary does not necessarily have to be a collection of conditions.
Instead it can contain general context-independent postcondition for each formal parameter
or a formula describing relation between argument values and return value. Additionally,
it can also contain information about side effects of the procedure.

The AI framework does not impose any restrictions in regards to the content of a sum-
mary. As a result, it can contain any type of data and it is solely on the programmer which
data he chooses to store and how he leverages them at call sites. The summary concept
allows Infer to analyse each procedure only once and then reuse stored procedure sum-
maries as many times as needed by instantiating them at call sites. Summary instantiation
is basically a substitution of general parts of a summary for concrete values at a call site.

Conversion of intraprocedural analysis into modular interprocedural analysis in the AI
framework is straightforward. First we define the summary data type along with boilerplate
code implementing interface exposed to the framework so that it can store and read the
summary. Finally, we add logic that uses summaries in the transfer functions.

Order in which procedures are analysed during interprocedural analysis does matter,
because the analyser needs to have a valid summary for each function that is called by
the currently analysed procedure. The scheduler implemented in the AI framework uses
a call graph to handle this issue and ensures that procedures are analysed in suitable order.
Call graph is an oriented graph describing dependencies between procedures, i.e. which
procedures can be called by a one specific procedure. Example of one such call graph can
be seen in Figure 3.3.

PMAIN

P1 P2

P3 P4

P6P5

Figure 3.3: A call graph describing call dependencies of each procedure represented by
a node. Outgoing edge signifies the possibility of a call to other procedure.

In the example, Infer would first analyse procedures P5 and P6 as they are sink vertices,
i.e., vertices that have no outgoing edges. These procedures do not call any other user
defined procedures but they might still call built-in or library procedures with defined
models that do not need to be analysed. Infer would then continue in similar fashion
towards source vertices with no incoming edges, i.e., Pmain in this case. As stated before,
Infer can also analyse multiple procedures concurrently and uses call graphs to ensure that
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no dependencies are violated when it selects a set of procedures that could be analysed
simultaneously.

This example also illustrates the incremental property of Infer that allows it to scale
extremely well especially in rapidly changing code bases where conventional batch analysis
is unfeasible. Incremental analysis only needs to re-analyse procedures directly affected by
a code change and all procedures up the call chain as the summaries must have changed
and therefore their updated versions should be propagated to all call sites. For example if
procedure P5 was changed, Infer would also have to re-analyse procedures P3, P1 and Pmain.
However, if P2 was changed, only Pmain would have to be re-analysed on top of it.

3.4 Cost analyser
Over the course of our work, Infer introduced a new performance oriented analyser called
Cost — a worst-case execution cost analyser based on ideas of parametric worst-case ex-
ecution time (WCET) analysis presented in [2]. The basic idea of the original tool is to
generate a so called execution count function (ECF𝑃 ) and a so called parametric calcula-
tion function (PCF𝑃 ) for a program 𝑃 and obtain the final parametric WCET (PWCET𝑃 )
function as a functional composition of ECF𝑃 and PCF𝑃 :

PWCET𝑃 : Z|ℐ𝑃 | −→ N = PCF𝑃 ∘ ECF𝑃 . (3.1)

This composite function takes an integer vector of instantiated input parameters of a pro-
gram 𝑃 (Z|ℐ𝑃 |) and returns a single natural number (N) representing the final WCET. This
approach takes advantage of the fact that it is often possible to obtain tighter upper bounds
on the WCET if the values of program input variables are known beforehand which is often
the case when deploying software for embedded systems.

3.4.1 Execution Count Function

The purpose of Execution Count Function is to calculate an upper bound on the number
of possible executions for each program point 𝑞 ∈ 𝒬𝑃 where 𝒬𝑃 is a set of all points in
a program 𝑃 . It is defined as follows:

ECF𝑃 : Z|ℐ𝑃 | −→ N|𝒬𝑃 | . (3.2)

It takes the same input as the composite PWCET𝑃 function and returns a vector of upper
bounds (N|𝒬𝑃 |) on the number of executions for each program point. Note that the notion
of a program point is not formally defined as it depends on the underlying program model,
and thus it can for example be a node or an edge of a CFG. The original tool leverages
abstract interpretation and generates the ECF𝑃 based on flow constraints inferred via flow
analysis and counting the elements in the abstract state.

The idea of counting the elements is used to find loop bounds and is based on the
following observation: “the number of environments associated with a program point is an
upper bound of the number times the program point can be visited in any execution” [2].
An environment maps tracked program variables to specific integer values, e.g., [𝑛 ↦→ 2, 𝑖 ↦→
0] is an environment which maps the variable 𝑛 to 2 and the variable 𝑖 to 0. Thus, if we
count all associated environments, i.e., all possible combinations of assignments to tracked
variables, we get an upper bound on the number of times a program point can be visited.
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However, the number of environments grows with the number of tracked variables (num-
ber of possible combinations increases) and it is thus desirable to track only relevant vari-
ables if we aim for a reasonably precise analysis. The original tool tracks only so called
control variables which directly or indirectly affect the control flow of a program, i.e., vari-
ables which affect the values of conditional expressions in CFG control nodes (similar to
the notion of loop counter variables that will be introduced in Section 4.2). Additionally,
to further reduce the set of tracked variables, an invariant analysis is employed in order to
find and remove variables that are invariant in the body of a specific loop.

Finally, the abstract interpretation is used to construct countable environments for
each program point. The basic idea is to perform a value analysis for each tracked variable
with an abstract domain of choice and subsequently count all discrete points in the concrete
domain. E.g., with an interval domain the counting is trivial as the total number of elements
in the interval [𝑎, 𝑏] is computed as:

|[𝑎, 𝑏]| = |𝛾([𝑎, 𝑏])| = |{𝑛 ∈ Z|𝑎 ≤ 𝑛 ≤ 𝑏}| = 𝑏− 𝑎+ 1 , (3.3)

where 𝛾 is the concretization function which maps abstract interval to concrete values it
represents. Computation for empty and infinite intervals is trivial and the results are 0 and
∞, respectively. However, depending on the chosen abstract domain, the counting process
might be quite difficult, especially for relational domains (such as polyhedral) which are
useful as it is often desirable to express the range of possible values symbolically in terms
of input parameters of a program. This way, we can count the number of associated
environments for a single tracked variable and the total number of environments |𝜎| for all
variables combined can be computed as follows:

|𝜎| =
∏︁
𝑣∈𝒱
|𝜎(𝑣)| , (3.4)

where |𝜎(𝑣)| is the calculation for a single variable 𝑣 from the set of tracked variables 𝒱.
The result is the desired upper bound on the number of executions of a single program
point. Please refer to [2] for more details.

The Cost analyser leverages the existing Inferbo analyser and its relational symbolic
interval domain [8] to perform the value analysis, count the elements, and obtain symbolic
upper bounds in terms of function parameters for each program point of a function. These
symbolic upper bounds can be used to calculate the final numerical execution bound when
a set of initial values for the input parameters is given. Additionally, the Cost analyser
assigns the bound of one to all program points with empty set of tracked variables, i.e.,
program points outside of loops.

3.4.2 Parametric Calculation Function

The purpose of this function is to transform a vector of upper bounds (N|𝒬𝑃 |) calculated
by the ECF𝑃 function into a single number (N) representing the final WCET. It is defined
as follows:

PCF𝑃 : N|𝒬𝑃 | −→ N . (3.5)
The original tool uses parametric calculation and the Implicit Path Enumeration Tech-
nique [11] (IPET) to obtain the PCF𝑃 function for a program 𝑃 . The basic idea of IPET
is to obtain an estimate of the WCET by maximising the following objective function:∑︁

𝑞∈𝒬𝑃

𝑐𝑞𝑥𝑞 , (3.6)
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where 𝑞 is a program point, 𝑐𝑞 is an atomic worst-case cost for a program point 𝑞 obtained
through a low-level analysis. The 𝑥𝑞 represent an upper bound on the executions of a pro-
gram point 𝑞 which is unknown but subject to a set of flow constraints obtained through
the flow analysis and also additional symbolic upper bound constraints calculated by the
ECF𝑃 function. I.e., it formulates the problem of finding the WCET as an Integer Linear
Programming (ILP) problem of maximising the objective function given a set of constraints.
This problem can be solved by any ILP solver which finds a solution for each unknown vari-
able 𝑥𝑞. Additionally, to get a bounded problem which can be solved, structural constraints
have to be introduced. E.g., the upper bounds 𝑥𝑖 and 𝑥𝑒 for the initial and the exit node
are equal to one or the upper bound 𝑥𝑗 for a join node is equal to the sum of upper bounds
of both incoming edges 𝑥𝑞 and 𝑥𝑝, i.e., 𝑥𝑗 = 𝑥𝑞 + 𝑥𝑝. Note that the atomic cost 𝑐𝑞 for
a program point 𝑞 can refer to clock cycles, milliseconds, or any other measurement unit
provided by the low-level analysis. Please refer to [2] for more details.

The Cost analyser adopts similar approach and estimates the worst-case execution cost
with Equation 3.6 where the 𝑐𝑞 factor refers to statically assigned atomic cost of Infer SIL
instruction, e.g., the LOAD instruction has atomic cost of one. However, it does not employ
an ILP solver and instead constructs equations based on generated structural constraints
and the symbolic upper bounds from the ECF𝑃 function. It applies various heuristics on
these equations to subsequently pick the tightest upper bound from a set of possible bounds
for each program point.
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Chapter 4

Loopus

Loopus [12] is a scalable tool for automated complexity and resource bound analysis of
integer programs. It was implemented by Moritz Sinn from Forsyte team in TU Wien.

Loopus mainly focuses on so called tight upper bounds on the worst-case cost. It uses the
back-edge metric — an uniform cost model that assigns the cost of one to each back jump
instruction (i.e., the instruction that is executed at the end of each loop iteration, causing
the return of control flow to the loop header) and the cost of zero to all others. The back-
edge metric is especially interesting in relation with the asymptotic time complexity where
it specifies how many times can a specific instruction be executed during a program run.
Moreover, the back-edge metric gives us the cost of executing concrete implementations
contrary to general asymptotic complexity.

Loopus is built upon the LLVM intermediate representation. The input C program
is first parsed into a so called labeled transition system (LTS) — an initial representation
of the program. LTS is further transformed into a difference constraint program (DCP),
which models difference constraints between program parameters and variables. Finally,
Loopus performs intraprocedural analysis and computes symbolic polynomial bounds over
program parameters for loops and consequently the complexity of non-recursive functions.
Because the intraprocedural analysis is quite restrictive and could lead to imprecise results
in most cases, Loopus uses function inlining. More specifically, it inlines calls to all non-
recursive functions that do not contain loops. This is crucial for precision because even
simple functions without loops might still modify loop counter variables through pointers
or return values and thus affect the total number of loop iterations.

Loopus has certain limitations [12], but authors claim that most of them are due to tech-
nical reasons rather than due to general limitations of the adopted approach. Loopus also
currently supports experimental heuristics that allow it to handle some cases of non-integer
code including typical loop iteration patterns over recursive data structures. Moreover,
recently a sound technique [5] was proposed and implemented in the Ranger tool [6], which
transforms input heap-manipulating programs into integer representation and uses Loopus
as a backend.

In this chapter we will provide a high level overview of the approach used by Loopus
as well as the process of program abstraction or bound calculation. This chapter is based
on [12, 6, 5].
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4.1 Program Representation
The core concept behind the program abstraction in Loopus is the use of so called difference
constraints: a natural abstraction for typical operations with counters in imperative pro-
grams. Difference constraints have been previously used for termination analysis [1] which
is, to some degree, related to bound analysis and Loopus has extended their potential in
this field.

Difference constraint (DC) is a relational inequality of the form 𝑥′ ≤ 𝑦+c where 𝑥 and 𝑦
are expressions over program variables and c ∈ Z is a constant. DCs are expressive enough
to be able to model large portion of real world imperative integer programs, in particular
their complexity aspects. Especially convenient is their ability to model problems related
to amortized complexity which is the main reason Loopus is able to obtain tighter upper
bounds more often than most of the existing tools. Real world examples that demonstrate
the need of amortized complexity analysis can be found, e.g., in parsing and string matching
procedures [13].

The 𝑥′ ≤ 𝑦 + c inequality can model counter increments, decrements and resets. The
main advantage of this representation is the fact that it is easy to distinguish between
increments and resets with just a syntactic check. For example if 𝑥 = 𝑦 then we get
𝑥′ ≤ 𝑥 + c which is clearly an increment for c > 0 and decrement for c < 0. Otherwise
if 𝑥 ̸= 𝑦 then we get the standard inequality 𝑥′ ≤ 𝑦 + c where c can be zero which
leads to the simplest case of reset 𝑥′ ≤ 𝑦. Loopus takes advantage of this in its bound
calculation algorithm and distinguishes between counter increments and resets to achieve
better precision.

The semantics of DCs is that the value of 𝑥 in the current state cannot be greater than
the value of 𝑦 from the previous state possibly increased by some constant value c. So
𝑥′ ≤ 𝑥 + 1 inequality can be interpreted in the following way: the value of variable 𝑥 in
the current state cannot be greater than the value of the same variable from previous state
plus one. In other words, the value of 𝑥 in the next program state will not increase by more
than one compared to the previous state.

DCP is then an abstract program model which is represented by a directed labeled
graph with transitions denoted by sets of DCs. The bound algorithm uses this model to
calculate the back jump cost of programs.

4.1.1 Labeled Transition Systems

The frontend of Loopus represents programs by labeled transition systems (LTS) that are
defined as tuples of set of program locations, set of transitions, single entry location and sin-
gle exit location. LTS is an oriented graph with program locations as nodes and transitions
as edges where each edge is labeled by a formula that encodes a transition relation specified
by each transition in a program. Figure 4.1 shows an example of simple integer program
on the left with its corresponding LTS representation on the right. Each branching point
is regarded as a program location which means we get two program locations, one for each
while loop. LTS contains one edge for each possible program path, where the semantics of
edge formulas is straightforward. For example, the formula 𝑖 > 0 ∧ 𝑖′ = 𝑖−1 ∧ 𝑗′ = 𝑗+1 la-
beling the edge 𝜏1 in Figure 4.1 contains one condition 𝑖 > 0 and two assignments: 𝑖′ = 𝑖−1,
𝑗′ = 𝑗+1. Conditions restrict the possibility of transition execution and assignments spec-
ify values of assigned variables after the execution. Assignments such as 𝑖′ = 𝑖 represent
that the value of variable 𝑖 was not changed on a transition. The asterisk symbol used in
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𝑙𝑏 : void tarjan(int n) {
int i = n; (processed elements)
int j = 0; (current stack size)

𝑙1 : while (i > 0) {
i--;
j++; (push)

𝑙2 : while (j > 0 && *)
j--; (pop)

𝑙𝑒 : }

𝑙𝑏

𝑙1

𝑙2

𝑙𝑒

𝜏0
𝑖′ = 𝑛 ∧
𝑗′ = 0

𝜏1
𝑖 > 0 ∧
𝑖′ = 𝑖− 1 ∧
𝑗′ = 𝑗 + 1

𝜏3

𝑗 ≤ 0 ∧
𝑖′ = 𝑖 ∧
𝑗′ = 𝑗

𝑖 ≤ 0

𝑗 > 0 ∧
𝑖′ = 𝑖 ∧
𝑗′ = 𝑗 − 1

𝜏2

Figure 4.1: Example tarjan [12] models a stack which processes the total number of 𝑛 ele-
ments. I.e., there are 𝑛 pushes and possibly 𝑛 pops due to non-determinism. Corresponding
LTS representation is on the right.

program conditions denotes the non-determinism that models conditions not supported in
the analysis. Consequently, these conditions are not part of edge formulas.

4.1.2 Difference Constraint Programs

DCP is an abstract program model that uses difference constraints instead of concrete
assignments and conditions to specify its transition relations. It can be represented by an
oriented graph, where its edge formulas consist solely of difference constraints. Example of
a DCP obtained from the previous LTS graph can be seen in Figure 4.2. We will discuss
the abstraction algorithm for transformation of a LTS into a DCP in the next chapter.
Each edge is labeled by a set of DCs of form [𝑥]′ ≤ [𝑦] + c where [·] denotes a 𝑚𝑎𝑥(·, 0)

𝑙𝑏

𝑙1

𝑙2

𝑙𝑒

𝜏0
𝑖′ = 𝑛 ∧
𝑗′ = 0

𝜏1
𝑖 > 0 ∧
𝑖′ = 𝑖− 1 ∧
𝑗′ = 𝑗 + 1

𝜏3

𝑗 ≤ 0 ∧
𝑖′ = 𝑖 ∧
𝑗′ = 𝑗

𝑖 ≤ 0

𝑗 > 0 ∧
𝑖′ = 𝑖 ∧
𝑗′ = 𝑗 − 1

𝜏2

𝑙𝑏

𝑙1

𝑙2

𝑙𝑒

𝜏0
[𝑖]′ ≤ [𝑛]
[𝑗]′ ≤ [0]

𝜏1 [𝑖]′ ≤ [𝑖]− 1
[𝑗]′ ≤ [𝑗] + 1𝜏3

[𝑖]′ ≤ [𝑖]
[𝑗]′ ≤ [𝑗]

[𝑖]′ ≤ [𝑖]
[𝑗]′ ≤ [𝑗]− 1

𝜏2

Figure 4.2: Comparison of the LTS graph and its DCP abstraction obtained from the
previous tarjan example.

function. Resource bounds algorithms are mostly based on finding so called numerical
measures (norms): an integer valued expressions over the program state. In this case,
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elements 𝑥 and 𝑦 are norms and the maximum function restricts their values to the natural
numbers. But there are other restrictions for valid DCPs regarding sets of DCs on edges.
First, there must not be any edges containing more than one DC with the same norm on
the left-hand side. Second, norms that are purely built over program parameters at the
left-hand side of DCs are forbidden. For example the DC [𝑛]′ ≤ [𝑖]−1 is forbidden as it has
norm 𝑛 consisting solely of program parameters at the left-hand side. On the other hand,
even though norm (𝑖−𝑛) contains the formal parameter 𝑛, it is not purely built over formal
parameters, thus it can be used as left-hand side. The intuition behind the first restriction
is obvious: we cannot assign multiple values to one norm on a single edge. The second one
stems from the fact that program parameters are regarded as constants, and thus all norms
built purely over parameters are constant as well, i.e., it is not possible to assign a new
value to a constant.

4.2 Abstraction Algorithm
The abstraction algorithm used in Loopus is a two step procedure that converts a program
represented by a LTS to a DCP. The algorithm first converts a program to a so called
guarded DCP over integers and then abstracts the guarded DCP to a DCP over natural
numbers. The first step utilizes the concept of guards to extend the natural numbers domain
of standard DCPs to the non-well founded domain of integers. The notion of guards is
related to transitions and similar to program conditions as they also limit the possibility
of transition execution. Transitions in a guarded DCP can only be executed if values of
all associated guards are greater than zero. In other words, guards are simply norms that
must have value greater than zero on execution of transitions that are guarded by them.
For example the norm 𝑖 would be the only guard of transition 𝜏1 from Figure 4.2 because
of the condition 𝑖 > 0 of the outer while loop.

4.2.1 Abstraction to Guarded DCP

This abstraction process consists of three steps. First, we heuristically construct the ini-
tial set of tracked norms, then we abstract transitions, and finally infer guards for each
transition.

1. Initial norm selection: The idea is based on so called loop counters, i.e., the vari-
ables that are incremented or decremented inside the loop. We search for all loop
headers and branching locations on loop paths and extract conditions of form 𝑎 > 𝑏
or 𝑎 ≥ 𝑏 that involve loop counter variables. These extracted conditions are then
converted to integer expressions, i.e. norms, in the following manner: conditions of
form 𝑎 > 𝑏 are transformed to 𝑎− 𝑏 and conditions 𝑎 ≥ 𝑏 are transformed to 𝑎− 𝑏+1.

2. Abstracting Transitions: All transitions initially start with an empty set of DCs
which is extended as follows: for each norm 𝑒 from the set of norms 𝑁 and each
transitions 𝜏 we check if associated DC set already contains a DC with 𝑒 at the left-
hand side and derive a new DC if not. Note, that we try to derive new DC only if
all variables used in the norm 𝑒 are defined on the according edge. In order to derive
new DC we symbolically execute 𝜏 and observe how the value of the norm 𝑒 changes.
So for example, given norm 𝑒 = (𝑙𝑒𝑛− 𝑖) and 𝜏 with the assignment 𝑖 = 𝑒𝑛𝑑 we would
infer norm (𝑙𝑒𝑛− 𝑒𝑛𝑑) as well as new DC (𝑙𝑒𝑛− 𝑖)′ ≤ (𝑙𝑒𝑛− 𝑒𝑛𝑑).
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We try to avoid generating new norms as much as possible because every new norm
is added to the set of norms 𝑁 and the abstraction cycle has to repeat until the
set stabilizes. For this reason, we first check if it is possible to derive new DC from
tracked norms and generate new ones only if we fail. For example, given the same
norm as in the previous example and an assignment 𝑖 = 𝑖 + 1, we can use the same
norm to generate DC (𝑙𝑒𝑛− 𝑖)′ ≤ (𝑙𝑒𝑛− 𝑖)− 1.

3. Inferring Guards: Each transition initially has an empty set of guards and we
iterate over each norm 𝑒 from the final set of tracked norms 𝑁 and each transition 𝜏
to determine if 𝑒 is a guard of transition 𝜏 . Loopus uses the Z3 SMT solver to prove
that the value of 𝑒 must be greater than zero in order to be able to execute transition
𝜏 . For example, if 𝜏 is guarded by the condition 𝑙𝑒𝑛 > 𝑖, then it can easily prove
validity of formula 𝑙𝑒𝑛 > 𝑖 =⇒ (𝑙𝑒𝑛− 𝑖) > 0 which means norm (𝑙𝑒𝑛− 𝑖) is a guard
of 𝜏 .

The precision of abstraction can be further improved by means of so called guard prop-
agation. If all incoming edges of a location 𝑙 share common subset of guards, then we can
propagate this subset to all outgoing edges from location 𝑙, provided that none of these
guards are decreased on any of the incoming edges. An example of a guarded DCP can be
seen in Figure 4.3.

𝑙𝑏

𝑙1

𝑙2

𝑙𝑒

𝜏0
𝑖′ ≤ 𝑛
𝑗′ ≤ 0

𝜏1
(𝑖) > 0
𝑖′ ≤ 𝑖− 1
𝑗′ ≤ 𝑗 + 1

𝜏3

𝑖′ ≤ 𝑖
𝑗′ ≤ 𝑗

(𝑗) > 0
𝑖′ ≤ 𝑖
𝑗′ ≤ 𝑗 − 1

𝜏2

Figure 4.3: A guarded DCP obtained after the first abstraction step. Norms 𝑖 and 𝑗 are
guards of the respective transitions 𝜏1 and 𝜏2.

4.2.2 Abstraction to DCP over Natural Numbers

The final abstraction step is straightforward. We simply remove the guards and use the
previously introduced max function to ensure the natural number valuation range of all
norms. We also have to modify the constant parts of DCs to make sure that they remain
invariant over natural numbers.

Every DC 𝑒′1 ≤ 𝑒2 + c with norms 𝑒1 and 𝑒2 is transformed based on the value of c
depending on if 𝑒2 is a guard or not. For c ≥ 0 we infer [𝑒1]

′ ≤ [𝑒2] + c which is guaranteed
to remain invariant over natural numbers. For negative values of c we first check if 𝑒2 is
a guard and infer [𝑒1]′ ≤ [𝑒2]−1 if it is. In other case we infer [𝑒1]′ ≤ [𝑒2]+0. The reasoning
is simple: if 𝑒2 is a guard, i.e., 𝑒2 > 0 before execution of a transition and c < 0 then
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[𝑒1]
′ ≤ [𝑒2]− 1 remains invariant over natural numbers. However, if 𝑒2 is not a guard, then

the inequality [𝑒1]
′ ≤ [𝑒2] + c does not hold and is not invariant for [𝑒2] = 0 and c < 0.

4.3 Bound Algorithm
In this section we first present the basic version of the bound algorithm and subsequently
extend it with optimizations and heuristics, eventually obtaining the version used in Loopus.

4.3.1 Local Bounds

The notion of local bounds is one of the core concepts underlying the bound calculation.
Local bound is a norm 𝑒 that limits the number of executions of some transition 𝜏 as long
as some other transitions that might increase the value of 𝑒 are not executed. For example,
in function tarjan in Figure 4.3, we can conclude that the norm 𝑗 limits the number of
consecutive executions of transition 𝜏2. I.e., it does not limit the total number of iterations
of the inner while loop. Thus, we call it a local bound instead of (total) bound as it does
not take into account that the value of norm 𝑗 might increase on some other transitions.

The algorithm that determines the local bound for each transition uses the concept of
strongly connected components (SCC):

1. First, we compute SCC for given DCP and eliminate transitions that do not belong
to any SCC, i.e., transitions that are not part of any cycle. Obviously, these can be
executed only once and hence the local bound is equal to 1.

2. We construct the set 𝜉(v) of transitions for each norm v that is not purely built over
constants or program parameters. We search for transitions that decrease the value
of norm v, i.e., transitions that contain DC of form v ≤ v + c, where c < 0. Then,
each transition from set 𝜉(v) is assigned a local bound of v.

3. The last step is performed only for remaining transitions without assigned local bound.
For each 𝜉(v) we try to remove one of its transitions from the original DCP graph,
recalculate SCCs and check if there are some transitions without a local bound that
are no longer part of any SCC. Such transitions are then assigned with a local bound
of v and we repeat the process with remaining sets 𝜉(v) until all transitions have
either local bound or bound assigned.
There is also a possibility that two different sets 𝜉(v1) and 𝜉(v2) will share some
transitions that will consequently have more than one possible local bound. In those
cases we can either choose one local bound non-deterministically or perform separate
bound calculation for each possible local bound and choose the one that leads to the
minimal (most precise) overall bound.

4.3.2 The Basic Algorithm

In this section we present the basic bound algorithm, where we limit ourselves to a syntactic
subclass of DCPs that allows use of standard DCs only on the single initial transition and
use of monotone DCs of form 𝑥′ ≤ 𝑥 + c everywhere else. In other words, we allow resets
of norms only on the single initial transition and all subsequent updates must be either
increments or decrements.
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The core idea behind this algorithm is to reason how often and by how much might the
local bound of a single transition increase during program execution. Loopus describes the
result as a transition bound (TB), i.e., the total bound on the number of times a certain
transition might be executed. The total execution cost of a program is then equal to the
sum of TBs of all its back-edges. The transition bound 𝑇ℬ(𝜏) of a transition 𝜏 is defined
as follows,

𝑇ℬ(𝜏) =

⎧⎨⎩𝜏𝑣, if 𝜏𝑣 /∈ 𝒱

IncrementSum(𝜏𝑣) + ResetSum(𝜏𝑣), else
(4.1)

where 𝜏𝑣 is the local bound of the transition 𝜏 . The first case returns the local bound itself
if it is a constant. In the second case, the IncrementSum(𝜏𝑣) procedure captures how often
and by how much might the local bound be increased. It is defined as follows:

IncrementSum(𝜏𝑣) =
∑︁

(t,c)∈ℐ(𝜏𝑣)

𝑇ℬ(t)× c (4.2)

The ℐ(𝜏𝑣) is a set of transitions which increase the value of local bound 𝜏𝑣 by the constant c,
i.e., those that contain a DC of form 𝜏𝑣 ≤ 𝜏𝑣+c, where c > 0. The IncrementSum procedure
iterates over all these transitions, recursively calls the 𝑇ℬ procedure, and multiplies the
computed transition bound by the constant c. The resulting sum gives us the total amount
by which might the local bound 𝜏𝑣 increase or 0 if ℐ(𝜏𝑣) is empty.

However, to get a precise bound we need to incorporate the initial value of the local
bound 𝜏𝑣 into the equation. The ResetSum procedure is defined as:

ResetSum(𝜏𝑣) =
∑︁

(t,a,c)∈ℛ(𝜏𝑣)

max(a+ c, 0) (4.3)

Similarly to the IncrementSum, the set ℛ(𝜏𝑣) contains transitions t that reset the value of
local bound 𝜏𝑣 to a with constant increment or decrement c, i.e., transitions that contain
a DC of form 𝜏𝑣 ≤ a+ c. Note that in the basic version the only transitions that can reset
the values of local bounds are the initial ones. Thus, the ℛ(𝜏𝑣) sets might only contain
the initial transition of a program because it is the only transition that can contain non-
monotone DCs. I.e., it can contain up to one 𝑚𝑎𝑥(a + c, 0) element which represents the
initial value of the local bound 𝜏𝑣.

The combination of IncrementSum and ResetSum procedures gives us the final 𝑇ℬ(𝜏)
procedure. However, the obtained transition bound is precise only if we assume that all
counter decrements in the concrete program are by 1 as the DCP abstraction algorithm
without extensions does not model arbitrary decrements. The only thing left is to apply
this procedure to all back-edges of a program to obtain the final worst-case cost.

4.3.3 Extending the Procedure with Constant Resets

We can improve the basic procedure to support DCPs with constant resets. In this case,
we allow resets of local bounds anywhere and not only on the initial edge. However, the
right-hand side norm of a reset DC has to be purely built over symbolic constants (program
parameters), hence constant resets. For example, the norm 𝑒2 of [𝑒1]′ ≤ [𝑒2] + c reset DC
would have to be purely built over program parameters. The bound algorithm for such
DCPs differs only in the definition of ResetSum procedure which is now defined in the
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following way:
ResetSum(𝜏𝑣) =

∑︁
(t,a,c)∈ℛ(𝜏𝑣)

𝑇ℬ(t)×max(a+ c, 0) (4.4)

As we can see, the only difference is that we additionally multiply each reset value by
the bound of the transition t where the reset occurs. The reasoning behind this change
is simple: as constant resets might now happen on any transition, we need to take into
account the fact that it might be executed multiple times. Thus, the total amount by
which the value of local bound 𝜏𝑣 might increase is also affected by the number of times
the reset happens. Example of such case can be seen in Figure 4.4. In this example we

void foo(int n) {
int j = n;
int cnt = 0;
while(j > 0) {

j--;
for(int i = n - 1; i > 0; i--)

cnt++;
}

}

𝑙𝑏

𝑙1

𝑙2

𝑙𝑒

𝜏0 [𝑗]′ ≤ [𝑛]

𝜏1 [𝑖]′ ≤ [𝑛] − 1
[𝑗]′ ≤ [𝑗]− 1𝜏3

[𝑗]′ ≤ [𝑗]

[𝑖]′ ≤ [𝑖]− 1
[𝑗]′ ≤ [𝑗]

𝜏2

Figure 4.4: A DCP with the [𝑖]′ ≤ [𝑛]− 1 constant reset on the non-initial transition 𝜏1.

reset the value of local bound 𝑖 of the transition 𝜏1 to the value of [𝑛]− 1 in each iteration
of outer loop. Thus, the total cost of function foo is [𝑛] + [𝑛] × max([𝑛] − 1, 0) because
we have 𝑛 back-jumps of the outer loop and 𝑛 − 1 back-jumps of the inner loop for each
iteration of the outer loop.

4.3.4 Extending the Procedure with Non-Constant Resets

We further extend the basic algorithm with a concept of variable bounds. Variable bounds
are expressions over program parameters that over-approximate the value of non-constant
resets. This way, Loopus reduces the problem of reasoning about non-constant resets to
the problem of reasoning about constant resets. For example, if we had the 𝑥 = 𝑦 reset
assignment in a concrete program, we would transform the variable 𝑦 into an expression
expr(𝑝𝑎𝑟𝑎𝑚𝑠) over program parameters. Loopus calls this expression an upper bound in-
variant for 𝑦 because the inequality 𝑦 ≤ expr(𝑝𝑎𝑟𝑎𝑚𝑠) has to be invariant. I.e., the
expr(𝑝𝑎𝑟𝑎𝑚𝑠) bounds the value of 𝑦 in terms of program parameters. The variable bound
is just a special case of an upper bound invariant which is used in DCPs.

The variable bound concept is used to extend the bound algorithm with a procedure
𝑉 ℬ which is similar to the 𝑇ℬ procedure and is defined as:

𝑉 ℬ(𝑒) =

⎧⎪⎨⎪⎩
𝑒, if 𝑒 /∈ 𝒱

IncrementSum(𝑒) + max
(t,a,c)∈ℛ(𝑒)

(𝑉 ℬ(a) + c), else
(4.5)

The 𝑉 ℬ returns the input norm 𝑒 itself it it is built purely over program parameters, i.e., it
is a constant. The IncrementSum procedure from the second case leads to mutual recursion
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of procedures 𝑇ℬ and 𝑉 ℬ. The max function picks the maximum value of all possible resets
and adds the total amount by which it might increase.

The 𝑇ℬ procedure also needs to be modified by over-approximating the value of a reset
of each element from the ResetSum by the 𝑉 ℬ procedure:

ResetSum(𝜏𝑣) =
∑︁

(t,a,c)∈ℛ(𝜏𝑣)

𝑇ℬ(t)×max(𝑉 ℬ(a) + c, 0) (4.6)

This leads to aforementioned mutual recursion between both procedures. Figure 4.5 presents
such DCP:

void twoSCCs(int n, int m1, int m2) {
int y = n;
int x;
if (*)

x = m1;
else

x = m2;
while(y > 0) {

y--;
x = x + 2;

}
int z = x;
while (z > 0)

z--;
}

𝑙𝑏

𝑙1

𝑙2

𝑙3 𝑙𝑒

𝜏0 [𝑦]′ ≤ [𝑛]

𝜏2[𝑦]′ ≤ [𝑦]
[𝑥]′ ≤ [𝑚2] 𝜏1

[𝑦]′ ≤ [𝑦]
[𝑥]′ ≤ [𝑚1]

𝜏5[𝑧]′ ≤ [𝑧]− 1

𝜏4 [𝑧]′ ≤ [𝑥]

[𝑦]′ ≤ [𝑦]− 1
[𝑥]′ ≤ [𝑥] + 2

𝜏3

Figure 4.5: A DCP with the [𝑧]′ ≤ [𝑥] non-constant reset on the transition 𝜏4

The key part of this example is the reset of the norm [𝑧] to the value of norm [𝑥] on
the transition 𝜏4. Because the norm [𝑥] is not constant, we employ the newly introduced
𝑉 ℬ procedure to over-approximate its value by a constant expression. This way we obtain
the variable bound of 𝑚𝑎𝑥([𝑚1], [𝑚2])+2× [𝑛] for the norm [𝑥] which in turn becomes the
transition bound for transition 𝜏5. Arguments for the max function are determined by the
two possible resets of [𝑥] to norm [𝑚1] or [𝑚2] and the increment of 2× [𝑛] is caused by the
𝑛 iterations of the first while loop. The full computation process is described in Table 4.1.

Even though this version of bound algorithm can solve DCPs with non-constant resets,
it still has many shortcomings. Most notable one is the fact that it is flow-insensitive and
consequently path-insensitive which leads to a coarse over-approximations even in simple
cases.

4.3.5 Improving the Bounds with Reset Chains

The introduced algorithm can be optimized by several techniques that improve the inferred
resource bounds. First, we will improve the bounds with the notion of reset chains. The
basic algorithm was based on the assumption that resets to the values over-approximated by
the 𝑉 ℬ(𝜏) procedure are valid in all iterations of a loop and it did not consider the possibility
that some reset values are reachable through program paths which can be executed only
once.
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𝑇ℬ(𝜏5)

→ Incr([𝑧]) + 𝑇ℬ(𝜏4)×max(𝑉 ℬ([𝑥]) + 0, 0)

→ 0 + 1×max(2× [𝑛] + max([𝑚1], [𝑚2]) + 0, 0)

→ 2× [𝑛] + max([𝑚1], [𝑚2])

𝑉 ℬ([𝑥])
→ Incr([𝑥]) + max(𝑉 ℬ([𝑚1]) + 0, 𝑉 ℬ([𝑚2]) + 0)

→ 2× [𝑛] + max([𝑚1], [𝑚2])

Incr([𝑥]) → 𝑇ℬ(𝜏3)× 2 = [𝑛]× 2

𝑇ℬ(𝜏3)
→ Incr([𝑦]) + 𝑇ℬ(𝜏0)×max(𝑉 ℬ([𝑛]) + 0, 0)

→ 0 + 1× [𝑛] = [𝑛]

Table 4.1: Computation of the transition bound for the 𝜏5 transition from the twoSCCs 4.5
example. Note that ℐ([𝑧]) = ℐ([𝑦]) = ∅, and consequently Incr([𝑧]) = Incr([𝑦]) = 0.

Reset chains allow reasoning about sequences of resets which might occur during exe-
cution and introduces a program path context for each reset. Loopus uses so called reset
chain graphs which allow for systematical reasoning about the context of each reset and
consequently provide an easy way how to find all the possible reset chains. Figure 4.6
presents a DCP (a) with the corresponding reset graph (b):

𝑙𝑏

𝑙1

𝑙2

𝑙3𝑙4

𝑙𝑒

𝜏0
[𝑥]′ ≤ [𝑛]
[𝑟]′ ≤ [𝑛]

𝜏1
[𝑥]′ ≤ [𝑥]− 1
[𝑟]′ ≤ [𝑟]

𝜏2
[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]
[𝑝]′ ≤ [𝑟]

𝜏5
[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]

𝜏3

[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]
[𝑝]′ ≤ [𝑝]− 1

𝜏4
[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [0]

[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]

𝜏6

(a) A DCP requiring reset chain reasoning in order
to obtain the precise linear complexity of 2𝑛.

[𝑛] [0]

[𝑟]

[𝑝]

[𝑥]

𝜏0 𝜏0 𝜏4

𝜏2

(b) Corresponding reset chain graph with
two reset chains: 𝜅1 = [0]

𝜏4,0−−→ [𝑟]
𝜏2,0−−→ [𝑝]

and 𝜅2 = [𝑛]
𝜏0,0−−→ [𝑟]

𝜏2,0−−→ [𝑝]. Reset chain
𝜅2 is valid only in the first iteration of the
loop 𝑙1 due to the 𝜏0 transition.

Figure 4.6

The semantics of this oriented reset graph are simple: each labeled edge corresponds to
a transition of a DCP with the same label where the reset [𝑥]′ ≤ [𝑦]+c occurs. For example,
the edge from node [0] to node [𝑟] represents a reset [𝑟]′ ≤ [0] which occurs on the transition
𝜏4 in the original DCP. We can also intuitively find all the maximal reset chains ending
in [𝑝] by looking at the graph: 𝜅1 = [0]

𝜏4,0−−→ [𝑟]
𝜏2,0−−→ [𝑝] and 𝜅2 = [𝑛]

𝜏0,0−−→ [𝑟]
𝜏2,0−−→ [𝑝].
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These two reset chains allow Loopus to infer the linear bound 𝑛 instead of 𝑛2 for the loop
𝑙3. The basic idea is to use a set of reset chains instead of a set of simple resets in the
𝑇ℬ procedure and then, in case of our example, apply following reasoning: [𝑝] is the local
bound for 𝜏3 which is reset on 𝜏2. If we execute 𝜏2 under context of 𝜏0, [𝑝] gets reset to
the value of [𝑛]. However, 𝜏2 can be executed under context of 𝜏0 only once because 𝜏0 is
the initial transition. Thus, the reset chain 𝜅2 is valid only for the first iteration of the
outer loop 𝑙1, which means [𝑝] can be reset to [𝑛] through [𝑟] only once, leading to the
aforementioned linear bound of 𝑛 for the loop 𝑙3. The reset chain 𝜅1 is, unlike 𝜅2, valid
in all of the iterations of 𝑙1 as the transition 𝜏4 is part of the loop. However, it does not
increase the total number of iterations of 𝑙3 because it resets [𝑝] to [0] through [𝑟]. Please
refer to [12] for details on the modified bound algorithm incorporating reset chains.

4.3.6 Improving the Bounds with Flow-Sensitivity

The basic algorithm is flow-insensitive which can lead to coarse over-approximations such
as the one in Figure 4.7a. Here, we infer bound 2𝑛 for the transition 𝜏1 because the initial
value 𝑛 of the local bound [𝑧] increases by one in each of 𝑛 iterations of the loop 𝑙2. However,
this bound is imprecise because the increments to [𝑧] at the location 𝑙2 can never flow back
to the location 𝑙1 and thus cannot affect the local bound of 𝜏1. The correct bound for 𝜏1 is
just 𝑛.

𝑙𝑏

𝑙1

𝑙2 𝑙𝑒

𝜏0
[𝑧]′ ≤ [𝑛]
[𝑦]′ ≤ [𝑛]

𝜏1

[𝑧]′ ≤ [𝑧]− 1
[𝑦]′ ≤ [𝑦]

𝜏2
[𝑧]′ ≤ [𝑧]
[𝑦]′ ≤ [𝑦]

𝜏3

[𝑧]′ ≤ [𝑧] + 1
[𝑦]′ ≤ [𝑦]− 1

(a) Flow-insensitive DCP

𝑧, 𝑙1 𝑦, 𝑙1

𝑧, 𝑙2 𝑦, 𝑙2

(b) Variable Flow Graph

𝑙𝑏

𝑙1

𝑙2 𝑙𝑒

𝜏0
[𝑧1]

′ ≤ [𝑛]
[𝑦1]

′ ≤ [𝑛]

𝜏1

[𝑧1]
′ ≤ [𝑧1]− 1

[𝑦1]
′ ≤ [𝑦1]

𝜏2
[𝑧2]

′ ≤ [𝑧1]
[𝑦2]

′ ≤ [𝑦1]

𝜏3

[𝑧2]
′ ≤ [𝑧2] + 1

[𝑦2]
′ ≤ [𝑦2]− 1

(c) Flow-sensitive DCP

Figure 4.7: DCPs constructed by the abstraction algorithm from Section 4.2 are flow-
insensitive by default. We construct a variable flow graph and rename the program variables
to obtain a flow-sensitive DCP.

Loopus can support flow-sensitivity by a pre-processing which renames the norms of
a DCP based on a variable flow graph (VFG). As the name suggests, a VFG shows how
the values of program variables (not symbolic constants) flow from one location to another.
Figure 4.7b shows the VFG obtained from the DCP in Figure 4.7a. The basic idea is that
we find all the SCCs in a VFG and then choose a fresh artificial variable 𝑣 for each SCC
𝜁 which we assign to all program variables at program locations that are part of 𝜁. After
that, we just rename the original left-hand side variables of DCs to 𝑣 on all edges that are
incoming to some location included in 𝜁 and also rename all right-hand side variables of DCs
to 𝑣 on all outgoing edges from some location in 𝜁. For example, the VFG on Figure 4.7b
contains four SCCs: 𝜁1 = {(𝑧, 𝑙1)}, 𝜁2 = {(𝑧, 𝑙2)}, 𝜁3 = {(𝑦, 𝑙1)} and 𝜁4 = {(𝑦, 𝑙2)}. We
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thus create four fresh variables and assign them to original program variables at certain
locations: (𝑧, 𝑙1) = 𝑧1, (𝑧, 𝑙2) = 𝑧2, (𝑦, 𝑙1) = 𝑦1 and (𝑦, 𝑙2) = 𝑦2. The only thing left to do is
to rename the original variables in the flow-insensitive DCP based on those assignments and
renaming rules which leads us to the flow-sensitive DCP in Figure 4.7c. For more details
please refer to [12].
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Chapter 5

Implementation

In this chapter we describe the implementation of Looper – the new performance oriented
analyzer for Infer based on the original Loopus tool. Due to the scope of this work, we lim-
ited ourselves to the core abstraction and bound algorithms without additional extensions
presented in [12]. However, even without the extensions, our analyzer is able to handle
some challenging code examples as we will show in our experimental evaluation. There are
three main parts of the implementation which we will discuss in detail in separate sections:
conversion of the native Infer CFG to the LTS representation, abstraction algorithm for
transformation of a LTS to a DCP, and the bound algorithm itself.

5.1 Construction of Labeled Transition System
The first implementation task was to devise an algorithm for construction of the labeled
transition system representation. The native control flow graph used by Infer is overly
complex due to its low-level nature as it builds upon the Smallfoot Intermediate Language.
Thus, it contains all the details regarding the manipulation with internal temporary vari-
ables by Load and Store instructions as well as the details about their lifetime. However,
Loopus works with a much higher-level of representation. Moreover, the abstraction algo-
rithm discussed in Section 4.2 transforms a LTS to a DCP. Figure 5.1 shows an example of
the native CFG generated by Infer.

We leverage the AI framework and construct a LTS after the symbolic execution of the
program. During the symbolic execution we also gather additional information which is
needed in the abstraction process, e.g., the initial set of norms. We use the abstract state
defined by the domain to store all the necessary data, then construct the LTS and perform
the bound analysis after we receive the post-condition state from the abstract interpreter.

5.1.1 Structure Construction

The first construction task was to implement the transfer functions and the join operator
in such a way that we would obtain a set of nodes and a set of edges at the end of the inter-
pretation. The construction of a graph from those two sets is handled by the OCamlgraph
library which also implements many useful graph algorithms such as the computation of
SCCs. However, in order to use the parametric Graph library module, we had to provide
an implementation for the signature node and edge data modules.

First, we introduce the necessary Node module used for unique identification of each
relevant program point in a LTS graph. It has the following inner variant type:

28



Start tarjan

VARIABLE_DECLARED(i:unsigned int); 
  n$7=*&n:unsigned int 
  *&i:unsigned int=n$7 

  NULLIFY(&n); 
  EXIT_SCOPE(n$7,n); 

VARIABLE_DECLARED(j:unsigned int); 
  *&j:unsigned int=(unsigned int)0 

  APPLY_ABSTRACTION; 

Exit tarjan

 + 

n$0=*&i:unsigned int

PRUNE((n$0 > (unsigned int)0), true);
  EXIT_SCOPE(n$0);

PRUNE(!(n$0 > (unsigned int)0), false);
NULLIFY(&i);
NULLIFY(&j);

EXIT_SCOPE(n$0,i,j);
APPLY_ABSTRACTION;

n$5=*&i:unsigned int 
  *&i:unsigned int=(n$5 - 1) 

  EXIT_SCOPE(n$5); 

n$4=*&j:unsigned int 
  *&j:unsigned int=(n$4 + 1) 

  EXIT_SCOPE(n$4); 
  APPLY_ABSTRACTION; 

 + 

n$1=*&j:unsigned int

PRUNE((n$1 > (unsigned int)0), true);
EXIT_SCOPE(n$1);

PRUNE(!(n$1 > (unsigned int)0), false);
EXIT_SCOPE(n$1);
APPLY_ABSTRACTION;

n$2=*&j:unsigned int
*&j:unsigned int=(n$2 - 1)

EXIT_SCOPE(n$2);
APPLY_ABSTRACTION;

Figure 5.1: Native Control Flow Graph generated by Infer from the tarjan (4.1) example.

type t = | Start of Location.t
| Prune of (Sil.if_kind * Location.t)
| Join of (t * t)
| Exit

This type basically extends the Location module provided by Infer which is used to repre-
sent physical (file, line and column) code locations only. However, in a LTS, we also need
to be able to represent abstract join and exit locations that do not have a counterpart in
the code. We thus use the Node module to model both physical and abstract locations.
The Prune (naming adopted by Infer) case models control flow splits that occur for exam-
ple with loops or conditional statements and is defined by the specific prune type (while
loop, for loop, switch, etc.) and a program location. The Start case is an entry point of
a procedure defined by the location of its header. The Join case represents an abstract
location uniquely specified by the last visited locations of the two joined branches as Infer
supports only binary join operator. The final Exit case represents an abstract exit point
of a procedure which does not need to be uniquely specified by any additional data as we
only have a single LTS exit node per procedure.
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Next we introduce the EdgeData module which implements various methods used during
the abstraction process and stores necessary data for both the LTS and DCP graphs. The
inner record data type is defined as:

type t = {
backedge: bool;
conditions: Exp.Set.t;
assignments: Exp.t PvarMap.t;
...

}

We explicitly store the information if the edge is a back-edge in the backedge boolean field
so we can easily detect it during the interpretation process if we encounter a prune location
and the last known location stored in the abstract state is the same or with a higher line
number. The conditions field stores all the conditional expressions from the Prune SIL
instructions, e.g., if we have a loop header with a 𝑖 > 0 termination condition, we add
it to the expression set on the true edge and then add the negated 𝑖 ≤ 0 expression to
the set on the false edge. This information is necessary for the derivation of guards. The
assignments map stores all the assignment expressions that occur between two program
points connected by an edge. We use the existing Pvar (program variable) module as the
key type of the map for easier look-ups when we need to check if a variable is modified on
an edge and the existing Exp (expression) module as the type for the associated values. We
use these assignment expressions during the abstraction process to check how the value of
our initial norms changes in order to derive new ones along with the creation of the set of
DCs for each transition.

With both the Node and EdgeData modules covered, we can now introduce some of the
fields from the abstract state record:

type t = {
last_node: DCP.Node.t;
edge_data: DCP.EdgeData.t;
graph_nodes: DCP.NodeSet.t;
graph_edges: DCP.EdgeSet.t;
...

}

The last_node field stores a Node instance corresponding to the last visited program lo-
cation. Once we need to create a new node, we simply add the (last_node, edge_data,
new_node) tuple to the graph_edges set and replace the value stored in the last_node
field with the new_node instance. Each new node is also added to the graph_nodes set and
every time we add a new tuple to the graph_edges set we also create a new empty instance
of the EdgeData module and store it in the edge_data field. In other words, we create a
new edge that connects two subsequently visited program locations (nodes) and repeat this
process until we obtain complete sets of nodes and edges.

However, this basic approach leads to a LTS with some unwanted nodes and edges
due to the way abstract interpretation works and due to specifics of Infer implementation.
These unwanted graph elements could break the bound analysis and we thus improved the
basic concept in order to obtain a simplified graph which would resemble the LTS presented
in [12] as close as possible. Figure 5.2 shows the structural comparison between the initial
and final LTS graphs obtained from the previously featured tarjan (4.1) example.
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Exit

while [51:9]

False

while [54:10]

True

Join Join

FalseTrue

Begin [49:1]

Backedge

Backedge

(a) Initial LTS

Exit

while [51:9]

while(false)
i <= 0

while [54:10]

while(true)
i > 0

j = j + 1
i = i - 1

while(false)
[backedge]

j <= 0
j = j
i = i

while(true)
[backedge]

j > 0
j = j - 1

i = i

Begin [49:1]

j = 0
i = n

(b) Final LTS

Figure 5.2: Structural comparison between the initial and final LTS graphs obtained from
the tarjan 4.1 example.

As we can see, the initial version has two additional join nodes and consequently four
more edges which is caused by the fact that the basic approach exactly follows the inter-
pretation process. For example, when the interpreter reaches the end of the inner while
loop, it has to perform a join between the abstract state inside the loop and the state right
before the header of the inner loop which has the header of the outer loop stored as the last
known location. Thus, we create a new join node and two new edges from the last known
locations of both abstract states pointing to it. The interpreter then needs to analyze the
inner loop again with the joined state to check if we have reached a fixpoint and executes
the header Prune instruction again. As that happens, we create a new back-edge from the
last known join node to the inner loop node.

The first issue with direct back-edges such as the one at the inner loop is solved as
follows: we store the locations of both abstract states on a join and check if one of them
matches the location of the next encountered Prune after the join. If it does, we delete the
join node along with the edge from the outer scope and redirect the correct edge to create
a loop-back as seen in the final LTS in Figure 5.2b.

The second issue is the join node between the false branch of the inner loop and the
abstract state from right before the the first prune which basically joins the final state
from the end of the outer loop body with the outside scope. Our goal is thus to ignore all
the edges from outer scopes which is a generalization of the first issue. However, unlike
with the first issue we cannot easily detect which edge is from the outer scope because
the locations do not match, i.e., we do not have a loop-back to the same location. To
solve this, we introduce a new concept of branching path which is a stack of the following
tuples: (Sil.if_kind * bool * Location.t). The Sil.if_kind element describes the
type of prune, i.e., the specific kind of loop or conditional statement. The boolean value
tells us if it is the true or false branch and the last element is the location of a prune.
We use the branching_path field in the abstract state record to store the current path
for each abstract state and whenever we encounter a Prune instruction we push a newly
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constructed tuple to the top of the stack. This way we can track our current nesting level
along with the information about each scope and also uniquely identify each branch of the
program. We leverage this to detect edges from the outer scopes as follows: we compute
a common prefix of both paths on a join and if this prefix exactly matches the path from
one of the states, we ignore the edge coming from it as it must be the outer scope state.
We can demonstrate this method on our tarjan example with two paths: 𝜋1 = [ ] and
𝜋2 = [(while, true, 51 : 9), (while, false, 54 : 10)]. The common prefix is obviously 𝜋 = [ ]
and it exactly matches the first path 𝜋1. Thus, the state with this path must be the outer
scope state and we can ignore the edge. However, we still have the join node with one
incoming edge, so on the next visit of the loop header we detect a join node with a single
incoming edge which we redirect to the loop header and delete the useless join node.

These two adjustments lead to a valid but still more complex LTS in most cases. We can
further reduce the amount of nodes and edges and consequently simplify our graphs without
any alterations to the original semantics. We will demonstrate some of these techniques
on Figure 5.3. We can remove the useless Join 1 node that merges both branches of the

void xnu(int len) {
int beg, end, i = 0;
while(i < len) {

i++;
if (*)

end = i;
if (*) {

int k = beg;
while (k < end)

k++;
end = i;
beg = end;

} else if (*) {
end = i;
beg = end;

}
}

}

(a) Example xnu from [12]

Exit

if [41:7]

Join 2

TrueFalse

while [28:8]

False

if [30:7]

True

if [33:7]

False

while [35:11]

True

Join 3

Outer

Begin [24:1]

Join 5

Outer

Join 1

True False

True

Join 4

False

Backedge

Backedge

(b) Initial LTS obtained from xnu 5.3a example

Figure 5.3

first if statement together. Every time we encounter the Prune instruction we check the
last_node field of the abstract state. If it is a Join(lhs, rhs), where the lhs and rhs
nodes match and the edge_data field of the abstract state is currently empty, we delete
the node and redirect incoming edges of both branches to the current Prune node.

The graph can be further simplified by merging the consecutive Join 2, Join 4,
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Exit

if [41:7]

Join

TrueFalse

while [28:8]

Backedge

False

if [30:7]

True

if [33:7]

False

while [35:11]

True

Begin [24:1]

True False

False

Backedge
True

Figure 5.4: Final LTS

and Join 5 nodes together to create one N-ary join
node. We first detect if a join is consecutive. The naive
approach is to check if the last_node field of one of
the joined states is already a join node and declare the
current join as consecutive if it is. If this happens, we
do not create a new join node and instead store the
previous one in the last_node field of the new joined
state. We also create a new edge from the last node of
the other state and add it to the incoming_edges set
field in the joined abstract state. In reality, on every
join we always first store all of the new edges in the
incoming_edges set. This way we can easily redirect
new edges if need be when we encounter a next Prune
instruction and then move them to the graph_edges set
after that. The simplification process in this case might
look like this: we first perform the join of both branches
of the if[41:7] statement, create the Join 2 node, and
add two new edges in the incoming_edges set. Next we
perform the join which would normally create the Join
4 node and identify it as consecutive. We thus create
a new edge from the while[35:11] node and add it to
the incoming_edges set instead. Then we perform the second and last consecutive join
represented by the Join 5 node. However, in this case we do not create a new edge as it
would be an edge from an outer scope. Finally, we execute the Prune instruction at the
while[28:8] location, create a new back-edge, and move all of the edges stored in the
incoming_edges set to the graph_edges set. The final LTS obtained with this approach
can be seen in Figure 5.4.

However, the naive approach to the detection of consecutive joins can fail in some cases
such as the one in Figure 5.5. The reason why it fails in this case is the fact that we have

void foo(int n, int m)
{

int x;
if(*)

x = 0;
else

x = m;
int y = x + n;
while(y > 0) {

y--;
}

}

(a) Example foo

Exit

if [80:5]

Join 1

TrueFalse

while [85:8]

Join 2

Outer

Begin [78:1]

False True Backedge

(b) Initial LTS

Exit

if [80:5]

Join 1

TrueFalse

while [85:8]

Begin [78:1]

False

Backedge
True

(c) Final LTS

Figure 5.5
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a join node right before the first while loop. Thus, when we join the loop branch with
the outer scope branch which has a join node stored in the last_node field, we detect
a consecutive join even though we do not consider it as one. This would lead to a LTS
with semantics different from the original program and in order to fix this, we leverage
the previously introduced branching_path field in a similar way once again. We compute
a common prefix of both paths and check if it matches the path from the state with a join
node. If it does, we do not consider it as a consecutive join because the join node must have
been from an outer scope. For example, the Join 2 node joins branches with following
paths: 𝜋1 = [ ] and 𝜋2 = [(while, true, 85 : 8)] with the common prefix 𝜋 = [ ] which
matches the 𝜋1 path of the outer scope state. We thus consider it as a normal join and
create the Join 2 node which is subsequently deleted because it has only one incoming edge
from the while[85:8] node (outer edge is ignored). The single edge is then redirected and
we get a direct back-edge in the final graph seen in Figure 5.5c.

We have now covered the basic principle behind our construction algorithm. It is neither
perfect nor final but it is not even meant to be as we are gradually improving it every time we
encounter a new problem with the construction. We also did not cover some implementation
details or minor hacks that were necessary due to some Infer specific alterations of the basic
interpretation algorithm. It would be useless considering the rapid development of Infer
which frequently renders some of our solutions obsolete or, better yet, unnecessary due to
some core changes.

5.1.2 Construction of Edge Formulas

Apart from the structure, we still need to construct assignment and conditional formulas
for each graph edge to get a complete LTS such as the one in Figure 5.2b. The process
is quite straightforward and involves implementation of transfer functions for SIL Load
and Store instructions. Infer always first loads all the addressable values into temporary
identifiers represented by the Ident module with the Load instruction and then uses the
Store instruction to store a new value into a program variable. The stored value is given by
an expression built over those temporary identifiers. Constant values can be stored directly
without previous Load instructions.

However, LTS edges are labeled by simple assignment or conditional expressions built
purely over program variables and not temporary identifiers. We thus use the ident_map
field in our abstract state to store the ident→ pvar mapping, i.e., the field is just a map
with Ident instances as keys and Pvar instances as values. The Load instruction is im-
plemented in a simple way: we create a new id → pvar association and add it to the
ident_map field if the loaded value is just a program variable. However, Infer might load
one temporary identifier into another in some cases such as when it encounters a pointer
dereference, i.e., we get a load assignment id2 = id1 which we cannot store in the map. To
fix this, we find the existing id1 → pvar association in the map and add a new transitive
id2 → pvar association based on the complete id2 → id1 → pvar load chain to it.

Our implementation of the Store instruction then uses the ident_map field to substitute
all identifiers with program variables in the right hand side expression of the pvar = expr

store assignment. We use a simple recursive function that traverses the expression tree
and performs the substitution whenever it encounters an identifier. Then we traverse the
updated expression once again and check if there already is an assignment stored in the
edge_data field for each pvar. If there is, we substitute it with the right hand side of the
stored assignment, e.g., if we had 𝑥 = 𝑧 + 1 and then 𝑦 = 𝑥, we would get 𝑦 = 𝑧 + 1. This
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step is not necessary but Loopus performs it to simplify the subsequent abstraction process.
Then we take the final expression and store it in the edge_data field in our abstract state.

Similarly to Store, we also substitute all identifiers in conditional expressions of each
Prune instruction to get conditions built purely over program variables. Then we simplify
the false branch condition because Infer wraps the true branch condition with the unary
logical not operator, i.e., we transform expressions such as ¬(𝑥 > 0) to simpler 𝑥 ≤ 0
normalized form which saves us some pattern matching later on. At the end, we store the
result in the edge_data field.

Apart from that, we also need to generate missing constant assignments such as i′ =
i on each Prune for all local function variables that were not modified on the current
edge and are defined at its target program location. However, there is a slight problem
with local variables because Infer in its current state exposes only the list of all local
variables used throughout a function without the information about their scope. This might
decrease the precision of the bound algorithm as we get more constant assignments and
consequently derive more norms during the abstraction process. Fortunately, we are able to
detect variable declarations during the interpretation with the VariableLifetimeBegins
metadata SIL instruction or even through the Store instruction if it is part of a CFG node
with the DeclStmt (Declaration Statement) type. However, even this approach has a flaw
as it works only if the declared variable is also initialized at the same time, otherwise Infer
neither generates the VariableLifetimeBegins instruction nor sets the type of the node
as DeclStmt. We opted for this approach in spite of that because it currently is the only
possible way how to reduce the precision loss with a small trade-off.

The complete generation process is quite simple. First we determine active local vari-
ables for each relevant program location, then we keep track of all variables that were
modified on the current edge and finally we add new pvar → pvar association to the
assignments map in the edge_data field for each unmodified variable which we obtain
through locals ∖ edge_modified set difference. The locals set of Pvar elements is stored
in our abstract state and we add a new Pvar every time we detect a declaration. The join
is defined as the localsa ∩ localsb set intersection which models variables going out of
scope. Similarly, the edge_modified set keeps track of all the local variables that were
modified on the current edge by Store instructions and we empty the set on each join.

These generated constant assignments are abstracted to constant DCs which are neces-
sary for the correct functionality of the bound algorithm. For example, the flow-sensitivity
transformation would not work properly without constant DCs which create the flow of
variable values from one location to another. We should now have complete edge formulas
including both conditions and assignments on each edge of a LTS and with that we can
conclude our construction discussion.

5.1.3 Initial Set of Norms

The collection process of initial norms is discussed under the construction section even
though it technically falls under the abstraction algorithm because we are collecting the
norms during the interpretation as we construct a LTS graph. The basic norm deriva-
tion concept described in Section 4.2.1 is followed by our implementation: we parse each
BinOp(op, lhs, rhs) binary expression condition represented by the Exp module and then
rearrange it based on the specific op operator to obtain a new norm with the same Exp type.

However, the selection of relevant conditions to derive norms from is based purely on
heuristics introduced in [12]: we look for conditions of form 𝑥 > 𝑦 or 𝑥 ≥ 𝑦 found in
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loop headers or conditional statements inside the loop if they involve variables increment-
ed/decremented on any loop path. The solution for loop header conditions is straightfor-
ward because we know that their values and consequently the values of involved variables
must change if the loop terminates. Thus, we only need to derive a new norm and then
immediately save it in the initial_norms set of Exp expressions in our abstract state.

The situation with conditional statements on loop paths is more complicated. First we
need to track all variables that were modified in a loop similarly to variables modified on
a single edge. We add a new Pvar to the loop_modified field in our abstract state every
time we modify a variable inside a loop and we use the stored branching path to check
if the current state is indeed in a loop. We also check the common prefix of branching
paths on each join and empty the set if we detect that we are no longer in any loop
after the join. Otherwise we union both sets. Finally, we add a new norm derived from
each non-loop Prune to the auxiliary potential_norms set in our abstract state if we are
currently in a loop and the variables constituting the derived norm are not present in the
loop_modified set. The potential_norms set basically contains norms that first have to
be confirmed by Store increment or decrement in the current loop. Potential norms are
moved to the initial_norms set upon confirmation.

5.2 Implementation of the Abstraction Algorithm
Our implementation conceptually follows the abstraction algorithm as presented in Sec-
tion 4.2. However, there are differences between the concept and the implementation and
the mere concept does not cover the derivation of DCs in much detail. This chapter covers
the implementation of each abstraction step described in Section 4.2.

5.2.1 Abstraction of Transitions

We have decided to implement the main abstraction loop in the imperative paradigm be-
cause it proved to be much easier to write and the final algorithm is more concise and
readable than it would have been in the functional style. The basic idea which we have
built upon is to iterate over all graph edges repeatedly, trying to construct new DCs and
consequently derive new norms until the set of all norms becomes stable. Algorithm 1
presents a pseudocode of the main abstraction loop.

Algorithm 1: Abstraction loop for inference of norms and derivation of DCs.
Input : Initial set of norms InitialNorms and a set of LTS edges with assignments
Output: A final set of norms and a set of edges with derived difference constraints

1 Unprocessed = InitialNorms;
2 Processed = ∅;
3 while Unprocessed ̸= ∅ do
4 Norm = Unprocessed.pop();
5 Processed.insert(Norm);
6 foreach Edge ∈ LTS do
7 NewNorm = Edge.deriveConstraint(Norm);
8 if NewNorm /∈ Processed then
9 Unprocessed.insert(NewNorm);
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We start with the Unprocessed set of initial norms and empty Processed set which
will contain all norms at the end. We basically pick a random norm from the Unprocessed
set in each iteration and then move it to the Processed set. Then we iterate over all edges
of a LTS and try to construct a new DC for each edge based on the previously selected
norm. However, this might lead to derivation of a norm which needs to be added to the
Unprocessed set if it is new in which case we have to repeat the whole process with the
new norm until the Unprocessed set gets empty.

The entire derivation algorithm is implemented by the derive_constraint function of
our EdgeData module. It creates a new DC for an edge based on the input variable norm
and also forms a new norm if it is not possible to construct a new DC only by reusing the
input one. We symbolically execute assignments stored in the assignments field of the
current edge and observe how the value of the input norm changes in order to construct
new DC. The whole process is trivial for Pvar norms: first we check if there even is an
assignment for the Pvar and immediately return if not, otherwise we further check if the
assignment is constant in which case we just construct a constant DC and return. We
currently support only few but common forms of non-constant assignments for Pvar norms:

1. 𝑥′ = 𝑦 or 𝑥 = c: construct 𝑥′ ≤ 𝑦/c DC and derive variable 𝑦 or constant c norm.

2. 𝑥′ = 𝑥± c: construct 𝑥′ ≤ 𝑥± c DC and do not derive any new norm.

3. 𝑥′ = 𝑦 ± c: construct 𝑥′ ≤ 𝑦 ± c DC and derive variable 𝑦 norm.

We also currently support norms of form 𝑥−𝑦 with considerably more complicated process-
ing. First we have to check if both involved variables are defined at the destination location,
i.e., they are assigned at the current edge. Note that formal parameters are defined at all
program locations and have imaginary constant assignments on each edge as a consequence.
Again, the function immediately returns if one of the variables is not defined, otherwise it
checks for constant assignments and constructs a constant DC if none of them is modified.
Now there are three remaining options:

1. Variable 𝑥 is modified:

∙ 𝑥′ = 𝑥± c: the value of 𝑥− 𝑦 norm increases/decreases, do not derive any new
norm and construct (𝑥− 𝑦)′ ≤ (𝑥− 𝑦)± c DC.

∙ 𝑥′ = 𝑦: the value of 𝑥− 𝑦 norm is set to 0, derive constant norm 0 and construct
(𝑥− 𝑦)′ ≤ 0 DC.

∙ 𝑥′ = 𝑧: derive new norm 𝑧 and construct (𝑥− 𝑦)′ ≤ (𝑧 − 𝑦) DC.

2. Variable 𝑦 is modified:

∙ 𝑦′ = 𝑦 + c: the overall value of 𝑥 − 𝑦 norm decreases (interval shrinks), do not
derive any new norm and construct (𝑥− 𝑦)′ ≤ (𝑥− 𝑦)− c DC.

∙ 𝑦′ = 𝑦 − c: the overall value of 𝑥− 𝑦 norm increases (interval expands), do not
derive any new norm and construct (𝑥− 𝑦)′ ≤ (𝑥− 𝑦) + c DC.

The remaining possibilities are symmetric to the previous option.

3. Both variables are modified:
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∙ 𝑥′ = 𝑧 ∧ 𝑦′ = 𝑧: the value of 𝑥− 𝑦 norm is set to 0, derive constant norm 0 and
construct (𝑥− 𝑦)′ ≤ 0 DC.

We focused on the most frequent types of norm expressions as writing processing code for
all of the possibilities at once would be unfeasible in the scope of this work but we plan to
gradually extend it in the future.

5.2.2 Guard Inference Algorithm

The next step is to infer guards for each transition, i.e., determine which norms from the
final set of norms are guaranteed to have positive value upon execution of a transition. We
employ the Z3 SMT solver to prove that a norm is also a guard on a transition based on the
Prune conditions obtained during the LTS construction. We process each graph edge with
the derive_guards function of the EdgeData module. The main purpose of this function
is to parse and transform native expressions from the Exp module format to the Z3.Expr
module format used by the Z3 solver. It transforms all of the conditions on the input edge
and constructs following Z3 formula for each norm: ¬(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 =⇒ 𝑛𝑜𝑟𝑚 > 0), where
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 denotes logical conjunction of all transformed edge conditions. By checking
the satisfiability of such formula, we are able to prove that a norm is also a guard if it
is unsatisfiable as it means that formula 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 =⇒ 𝑛𝑜𝑟𝑚 > 0 is valid. All proved
guards are stored in the guards field of the EdgeData module.

Algorithm 2: Guard inference algorithm
Input : Set of norms NormSet and a set of LTS edges with conditions
Output: A set of DCP edges with guards and difference constraints

1 foreach Edge ∈ LTS do
2 ConditionsZ3 = TransformZ3(Edge.conditions);
3 foreach Norm ∈ NormSet do
4 NormZ3 = TransformZ3(Norm);
5 Formula = ¬(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑍3 =⇒ 𝑁𝑜𝑟𝑚𝑍3 > 0);
6 if Z3.Check(Formula) = UNSATISFIABLE then
7 Edge.guards.insert(Norm);

5.2.3 Guard Propagation Algorithm

The algorithm for propagation of guards as presented in Section 4.2.1 has one major flaw.
It does not propagate guards to false branches at loop headers correctly because the loop
back-edge is also an incoming edge and the basic recursive algorithm does not prioritize
the propagation through loop body before it processes the false branch. It is necessary to
first propagate guards through the loop body, recalculate the set of shared guards from all
incoming edges including the back-edge, and finally propagate guards to the false branch.
The modified version is presented in Algorithm 3.

First, we iterate over all DCP edges and construct a set of nodes which have at least
one guarded incoming edge. This set is passed to the PropagateGuards recursive function
which implements the propagation algorithm. The auxiliary GetSharedGuards function
constructs a set of non-decreased guards shared among all incoming edges excluding back-
edges. Similarly, the activeGuards method of the EdgeData module returns only non-
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decreased guards of an edge. The partition method separates the set of outgoing edges
into a true and false edges based on the stored tuple from the top of the branching_path
stack. Recall that the tuple contains a boolean value which specifies the type of branch.

Algorithm 3: Modified guard propagation algorithm which prioritises propagation
through true branches at loop headers

Input : Initial set of guarded DCP nodes GuardedNodes
Output: A DCP with propagated guards

1 Function PropagateGuards(GuardedNodes):
2 if GuardedNodes ̸= ∅ then
3 Node = GuardedNodes.pop();
4 OutgoingEdges = Node.outgoingEdges;
5 Guards = GetSharedGuards(Node.incomingEdges);
6 if Node is LOOP_HEADER then
7 TrueEdge, FalseEdge = OutgoingEdges.partition();
8 TrueEdge.guards.add(Guards);
9 if ¬TrueEdge.backedge then

10 PropagateGuards(𝐺𝑢𝑎𝑟𝑑𝑒𝑑𝑁𝑜𝑑𝑒𝑠 ∪ 𝑇𝑟𝑢𝑒𝐸𝑑𝑔𝑒.𝑑𝑠𝑡𝑁𝑜𝑑𝑒);
11 Backedge = Node.incomingEdges.findBackedge();
12 else
13 Backedge = TrueEdge;
14 Guards = Guards ∩ Backedge.activeGuards();
15 OutgoingEdges.remove(TrueEdge);
16 if Guards ̸= ∅ then
17 foreach Edge ∈ OutgoingEdges do
18 Edge.guards.add(Guards);
19 if ¬Edge.backedge then
20 GuardedNodes.add(Edge.dstNode);

21 return PropagateGuards(GuardedNodes);
22 else return;

5.3 Implementation of the Bound Algorithm
The implementation of the bound algorithm relatively closely resembles the formulas pre-
sented in Section 4.3 due to the functional paradigm of the OCaml language. This chapter
covers some of the more technical but nevertheless important details which were not men-
tioned in the previous chapters focusing on the approach used in Loopus. For example, one
such detail is caching of results which might seem irrelevant but is in fact crucial if we want
to preserve the polynomial time complexity of the bound algorithm.

Algorithm 4 presents the main bound computation loop. We iterate over all DCP edges
and compute a bound for each back-edge with the TransitionBound procedure which also
returns updated cache. If the bound computation does not terminate due to cyclic mutual
recursion, we break the main loop and return the ∞ bound. This occurs if the input
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Algorithm 4: Main loop of the bound algorithm
Input : DCP over natural numbers without guards
Output: A sum of all back-edge cost bounds reflecting the worst-case asymptotic

complexity of a function
1 Cache = EmptyCache();
2 BoundSum = 0;
3 foreach Edge ∈ DCP do
4 if Edge.backedge then
5 EdgeBound, Cache = TransitionBound(Edge, Cache);
6 if 𝐸𝑑𝑔𝑒𝐵𝑜𝑢𝑛𝑑 =∞ then
7 BoundSum = ∞;
8 break;
9 BoundSum = BoundSum + EdgeBound;

program does not terminate or if the precise bound is not polynomial. Otherwise we add
the edge bound to the final sum and simplify the expression in the process.

We use a custom Bound module which extends the Exp module provided by Infer to
represent bound expressions. The inner recursive variant type is defined as follows:

type t = | BinOp of Binop.t * t * t
| Value of Exp.t
| Max of t list
| Min of t list
| Inf

The first BinOp case allows us to model complex bound expressions with binary operators.
The Value case represents individual terms, i.e., constants or formal parameters. The
Max and Min cases model the max and min functions respectively and the Max case covers
both the 𝑚𝑎𝑥(𝑥, 0) and 𝑚𝑎𝑥(𝑥, . . . ) variants determined based on the size of the t list
argument list. The min function is used in a modified bound algorithm which leverages
reset chains introduced in Section 4.3.5. The last Inf case models previously discussed ∞
bound.

The previously mentioned caching mainly concerns the results of the TransitionBound
and VariableBound procedures. However, we also cache constructed ℐ(𝜏𝑣) and ℛ(𝜏𝑣) sets
and reset chains to avoid repeated computations. We use the following record data type to
store the results:

type cache = {
updates: (Increments.t * Resets.t) Exp.Map.t;
variable_bounds: Bound.t Exp.Map.t;
reset_chains: RG.Chain.Set.t Exp.Map.t;

}

The updates field is a map which associates local bound norms 𝜏𝑣 to the ℐ(𝜏𝑣) and ℛ(𝜏𝑣)
sets represented by the Increments and Resets modules. The Increments set contains
following tuples: (DCP.E.t * IntLit.t), where the DCP.E.t element is a DCP edge which
increments the local bound 𝜏𝑣 by an integer constant represented by the IntLit.t Infer
module, i.e., edge with 𝜏𝑣 ≤ 𝜏𝑣 + c DC. Similarly, the Resets set contains (DCP.E.t *
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Exp.t * IntLit.t) tuples which correspond to edges with 𝜏𝑣 ≤ a + c reset DCs. The
variable_bounds map stores computed variable bounds and the reset_chains map stores
all reset chains for each local bound norm 𝜏𝑣 used in a 𝑇ℬ(𝜏) computation. The transition
bound cache is stored directly in the mutable bound_cache field of the EdgeData module.

5.3.1 Implementation of the 𝑇ℬ(𝜏) and 𝑉 ℬ(a) Procedures

The 𝑇ℬ(𝜏) implementation is based on the modified version which incorporates reset chains
discussed in Section 4.3.5. First, we will describe the generalised IncrementSum procedure
intended for sets of norms:

IncrementSum(𝒜) =
∑︁
a∈𝒜

∑︁
(t,c)∈ℐ(a)

𝑇ℬ(t)× c (5.1)

where 𝒜 =
⋃︀
𝜅 ∈ ℜ(𝜏𝑣) 𝑎𝑡𝑜𝑚𝑠1(𝜅). Similar to theℛ(𝜏𝑣) set, the ℜ(𝜏𝑣) is a set of all maximal

reset chains for a local bound 𝜏𝑣. The 𝑎𝑡𝑜𝑚𝑠1(𝜅) is a set of variable norm nodes along a reset

[0]

[𝑥] [𝑦]

[𝑧] [𝜏𝑣]

𝜏0, 0

𝜏1, 1

𝜏2, 5

𝜏3, 2

𝜏4, 0

Figure 5.6: A reset graph with
multiple paths between two
nodes.

chain 𝜅 that have at most one path to the local bound
𝜏𝑣 in a reset graph. Consider the reset graph in Fig-
ure 5.6 and assume we have two maximal reset chains
𝜅1 = [0]

𝜏0,0−−→ [𝑥]
𝜏2,5−−→ [𝑦]

𝜏4,0−−→ [𝜏𝑣] and 𝜅2 = [0]
𝜏0,0−−→

[𝑥]
𝜏1,1−−→ [𝑧]

𝜏3,2−−→ [𝜏𝑣]. In this case, we have 𝑎𝑡𝑜𝑚𝑠1(𝜅1) =
{[𝑦], [𝜏𝑣]} and 𝑎𝑡𝑜𝑚𝑠1(𝜅2) = {[𝑧], [𝜏𝑣]} as there is at most
one path between those nodes and the [𝜏𝑣] node in the
reset graph. The 𝑎𝑡𝑜𝑚𝑠1(𝜅) set has a 𝑎𝑡𝑜𝑚𝑠2(𝜅) set com-
plement which contains remaining nodes with more than
one path, i.e., 𝑎𝑡𝑜𝑚𝑠2(𝜅1) = 𝑎𝑡𝑜𝑚𝑠2(𝜅2) = {[𝑥]}. We
consider only variable norms, i.e., non-source nodes, be-
cause constants and formal parameters cannot be incre-
mented. Note, that 𝒜 is a set of unique elements, hence⋃︀
𝜅 ∈ {𝜅1, 𝜅2} 𝑎𝑡𝑜𝑚𝑠1(𝜅) = {[𝑧], [𝑦], [𝜏𝑣]}. We can rewrite

the generalised IncrementSum procedure with the use of
the original one defined in Equation 4.2 as follows:

IncrementSum(𝒜) =
∑︁
a∈𝒜

IncrementSum(a) (5.2)

The modified ResetSum procedure is defined as follows:

ResetSum(𝜏𝑣) =
∑︁

𝜅 ∈ ℜ(𝜏𝑣)
𝑇ℬ(𝑡𝑟𝑛(𝜅))×max(𝑉 ℬ(𝑖𝑛(𝜅)) + 𝑐(𝜅), 0)

+ IncrementSum(𝑎𝑡𝑜𝑚𝑠2(𝜅)) (5.3)

where 𝑇ℬ({𝜏1, 𝜏2, . . . , 𝜏𝑛}) = min
1≤𝑖≤𝑛

𝑇ℬ(𝜏𝑖) is a generalisation of the 𝑇ℬ procedure for sets
of transitions. The 𝑡𝑟𝑛(𝜅) is a set of all transitions of the 𝜅 reset chain, the 𝑖𝑛(𝜅) refers
to the first norm of the 𝜅 reset chain, and finally the 𝑐(𝜅) is a sum of all integer constants
along the 𝜅 reset chain.

Algorithm 5 presents the transition bound procedure without any error or cache han-
dling in order to remain concise. The GetResetChains procedure constructs a set of reset
chains for the local bound norm based on a reset graph and a DCP. We discuss this pro-
cedure in more detail in Section 5.4. The rest is straightforward: we compute and add
together both the IncrementSum and the ResetSum and return the final transition bound.
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Algorithm 5: Simplified transition bound procedure without error handling and
cache manipulation. The IncrementSum and ResetSum procedures follow Equation 5.1
and Equation 5.3, respectively.

Input : DCP edge Edge with determined local bound norm
Output: A transition bound for the input edge and updated cache
Data: Atoms1 — a set of reset chain nodes (norms) with at most one path to the

node representing the local bound norm in the corresponding reset graph
1 Function TransitionBound(Edge, Cache):
2 if Edge.localBound ∈ 𝒱 then
3 ResetChains = GetResetChains(Edge.localBound, ResetGraph, DCP);
4 Atoms1 = ∅;
5 foreach Chain ∈ ResetChains do
6 Atoms1 = Atoms1 ∪ Chain.atoms1();
7 return IncrementSum(Atoms1) + ResetSum(ResetChains);
8 else return Edge.localBound;

The implementation of these two procedures as well as the 𝑉 ℬ(a) procedure closely
follows the previously presented equations and involves mainly basic arithmetic over bound
expressions and simplification techniques which reduce the number of terms in the final
bound expression.

5.4 Construction of Reset Chains
The construction process involves generation of a reset graph which we proceed to traverse
in order to find maximal reset chains. However, we also have to ensure that all reset chains
are so called optimal which requires additional traversals of a corresponding DCP. We will
cover the validation process in more detail shortly.

We will first discuss the RG module which represents a reset graph and the generation
process. Similarly to the DCP construction, we used the parametric Graph module from
the OCamlgraph library and provided an implementation for the signature Node and Edge
modules. It corresponds to the reset graph nodes and edges as discussed in Section 4.3.5.
Thus, the RG.Node module is just a wrapper for the Exp module which we use to represent
norms. The RG.Edge module has a following inner record data type:

type t = {
dcp_edge : DCP.E.t;
const : IntLit.t;

}

The dcp_edge field stores a reference of the original DCP edge with the 𝑛𝑜𝑑𝑒dst ≤ 𝑛𝑜𝑑𝑒src+
const reset DC. It is necessary to keep references due to the ResetSum procedure which
has to construct the 𝑡𝑟𝑛(𝜅) transition set for a given reset chain 𝜅 and recursively call the
TransitionBound procedure for each of these transitions.

The straightforward process of reset graph construction is presented in Algorithm 6.
We search for reset DCs of form [𝑥] ≤ [𝑦] + c and use the isReset function to perform
the syntactic inequality check of [𝑥] and [𝑦] norms. Each reset DC is transformed into
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a [𝑦]
𝜏,c−−→ [𝑥] part of the reset graph, i.e., the [𝑦] norm becomes the source node and the [𝑥]

norm becomes the destination node which signifies the assignment of 𝑦 to 𝑥.

Algorithm 6: Construction of a reset graph based on edges of existing DCP. Each
reset DC of form 𝑥 ≤ 𝑦 + c on DCP edge 𝑒 is used to create two new RG nodes
where 𝑥 and 𝑦 represent the destination and source nodes, respectively. Both nodes
are connected by an edge which stores the DCP edge 𝑒 and the DC constant c.

Input : A set of DCP edges
Output: A corresponding reset graph

1 ResetGraph = RG.create();
2 foreach Edge ∈ DCP do
3 foreach DC ∈ Edge.constraints do
4 if DC.isReset() then
5 SrcNode = ResetGraph.addNode(DC.rhsNorm);
6 DstNode = ResetGraph.addNode(DC.lhsNorm);
7 ResetGraph.addEdge(srcNode, {Edge, DC.const}, dstNode);

The subsequent construction of reset chains is however not as simple as traversing the
reset graph and finding the longest possible sequences of transitions. We also have to check
if a reset chain is optimal, i.e., maximal and sound at the same time and shorten the chain
accordingly if it is not. A reset chain 𝜅 = a𝑛

𝜏𝑛,𝑐𝑛−−−→ a𝑛−1
𝜏𝑛−1,𝑐𝑛−1−−−−−−→ . . . a1

𝜏1,𝑐1−−−→ a0 is sound,
if each norm a𝑖 for 1 ≤ 𝑖 < 𝑛 is reset on all paths from the target location of 𝜏1 to the
source location of 𝜏𝑖 in the corresponding DCP. The intuition is following: if we are using
a reset chain 𝜅 for a norm a0, all the variable norms along the chain must actually be reset
between any two executions of the transition 𝜏1, otherwise the entire sequence of resets
might not occur on some execution paths of a program and therefore the chain would not
be applicable on all relevant execution paths. An optimal reset chain is thus a sound reset
chain that cannot be further extended without becoming unsound.

Recall the previously featured Figure 4.6. We can demonstrate that the reset chains

𝑙𝑏

𝑙1

𝑙2

𝑙3𝑙4

𝑙𝑒

𝜏0
[𝑥]′ ≤ [𝑛]
[𝑟]′ ≤ [𝑛]

𝜏1
[𝑥]′ ≤ [𝑥]− 1
[𝑟]′ ≤ [𝑟]

𝜏2
[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]
[𝑝]′ ≤ [𝑟]

𝜏5
[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]

𝜏3

[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]
[𝑝]′ ≤ [𝑝]− 1

𝜏4

[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [0]

[𝑥]′ ≤ [𝑥]
[𝑟]′ ≤ [𝑟]

𝜏6

[𝑛] [0]

[𝑟]

[𝑝]

[𝑥]

𝜏0 𝜏0 𝜏4

𝜏2

Figure 4.6: #2 (from page 25)
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𝜅1 = [0]
𝜏4,0−−→[𝑟]

𝜏2,0−−→[𝑝] and 𝜅2 = [𝑛]
𝜏0,0−−→[𝑟]

𝜏2,0−−→[𝑝] are indeed optimal, i.e., sound and in this
case obviously also maximal. Both of these chains have only single variable norm [𝑟] that
has to be reset and 𝑖 = 1, hence 𝜏𝑖 = 𝜏1. Therefore, [𝑟] has to be reset on all paths from
the location 𝑙3 to the location 𝑙2, which is clearly true because the transition 𝜏4 with the
[𝑟]′ ≤ [0] reset DC is executed on all possible paths. We can conclude that both reset chains
are sound and maximal as they cannot be further extended.

The construction of optimal reset chains involves two steps. First, we find longest and
possibly unsound reset chains with the recursive procedure presented in Algorithm 7. We

Algorithm 7: Reset graph traversal and construction of unsound reset chains. The
modified DFS algorithm traverses the input reset graph in the opposite direction,
starting at the CurrentNode, and gradually extends the input zero length chain with
each reset graph node until it reaches a source node.

Input : Reset graph node CurrentNode representing the local bound norm and
a zero length reset chain Chain

Output: A set of all longest (possibly unsound) reset chains
Data: RG — a corresponding reset graph with global scope

1 Function TraverseRG(CurrentNode, Chain):
2 IncomingEdges = RG.incomingEdges(CurrentNode);
3 if IncomingEdges = ∅ then return { Chain } ;
4 else
5 ChainSet = ∅;
6 foreach (SrcNode, Edge, DstNode) ∈ IncomingEdges do
7 ExtendedChain = Chain.append((SrcNode, Edge, DstNode));
8 ChainSet = ChainSet ∪ TraverseRG(SrcNode, ExtendedChain);
9 return ChainSet;

start at the local bound node with a chain of zero length represented by an empty list
and perform a depth first search in the opposite direction through the reset graph. The
incomingEdges procedure returns a set of incoming edges in the form of a tuple (RG.Node.t,
RG.Edge.t, RG.Node.t) where the first element is the predecessor source node and the last
element is the destination node equal to the CurrentNode. We terminate the recursion
if there are no incoming edges and return a singleton set with the final chain which is
reversed due to the opposite direction traversal. Otherwise we create a new extended chain
and recursively call the TraverseRG procedure for each predecessor node. Finally, we return
a set of all reset chains. We do not need to maintain a set of visited nodes as with the
general DFS algorithm because a reset graph of a flow-sensitive DCP is guaranteed to be
acyclic.

The second step involves validation of each obtained reset chain, i.e., we try to find the
longest sound subsequence of each reset chain. Algorithm 8 presents a chain optimization
pseudocode. We start at the first a0 norm of the reversed chain (local bound) and gradually
extend the chain as we check for resets of each norm a1≤𝑖<𝑛 on all DCP paths between
locations Origin and End. The recursive CheckPaths procedure performs a DFS of the
corresponding DCP and returns None if there is a path without a reset or if there are no
paths at all. If this occurs, we terminate the loop and return the sound subsequence. Note,
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Algorithm 8: Finding the longest sound subsequence of a reset chain. The algorithm
gradually extends the initial zero length sound chain with elements from the unsound
input chain, starting at the end and progressing towards the first element. Each norm
of the unsound chain is checked for resets on all DCP paths with the CheckPaths
procedure.

Input : Unsound reset chain UnsoundChain and the origin node PathOrigin for
the paths check, i.e., the destination node of the last transition of the
input reset chain

Output: An optimal (longest sound) reset chain
1 Function OptimizeChain(UnsoundChain, PathOrigin):
2 OptimalChain = [UnsoundChain[0]];
3 for 𝑖← 1 to UnsoundChain.length() - 1 do
4 SrcNorm, Data, DstNorm = UnsoundChain[i];
5 PathEnd = Data.dcpEdge.dstNode;
6 PathsReset = CheckPaths(PathOrigin, ∅, DstNorm, None);
7 if PathsReset = None then break ;
8 else OptimalChain.prepend(UnsoundChain[i]) ;
9 return OptimalChain;

that we prepend each new norm to get non-reversed final chain which starts with the a𝑛
norm.

The CheckPaths procedure presented in Algorithm 9 performs a slightly modified tra-
ditional DFS. We start at the PathOrigin node and recursively traverse a DCP until we
reach the PathEnd node or a dead end without any outgoing edges. The termination con-
dition for a valid path contains additional check for non-empty set of visited nodes because
we start at the PathOrigin node which can be equal to the PathEnd node in edge cases.
The PathReset argument stores the information whether we already encountered a reset of
the Norm argument on the current path. The PathReset argument has an optional boolean
data type with three possible values in order to differentiate between three possible sce-
narios: a path that contains a reset, a path that does not contain a reset, and not a path.
We start with a None value and change it to True when we encounter a reset of the norm.
The True value cannot be changed and is propagated further until we reach the end of
the path. The None value returned in cases of no path is ignored as we care only about
resets on valid paths. The procedure returns False if it reaches the end of the path with
the None value. However, the three possible values are encoded only to True or None at
the end for more convenient checking later on. Note that it is possible that there will be
no valid paths in which case the procedure naturally returns None. Thus, we can interpret
the None value as False because it does not matter whether there were no valid paths or if
there was a path without a reset. The isReset method also returns None if the Edge does
not contain a reset of the Norm. We assume that PathOrigin and PathEnd variables have
global scope.

5.5 Flow-sensitivity Transformation
The three step flow-sensitivity transformation follows the concept discussed in Section 4.3.6.
First, we construct a VFG, then we compute SCCs and create a VFG mapping from each
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Algorithm 9: Norm reset check with DFS traversal. The algorithm checks if all paths
between the PathOrigin and PathEnd nodes contain a reset of the input Norm.

Input : Path origin node Current, empty set of visited nodes Visited, and the norm
of interest Norm.

Output: An information if the input norm was reset on all paths
Data: The PathOrigin, and PathEnd variables are inherited from the scope of

Algorithm 8
1 Function CheckPaths(Current, Visited, Norm, PathReset):
2 if Current = PathEnd ∧ Visited ̸= ∅ then
3 if PathReset = None then return False ;
4 else return PathReset ;
5 else
6 Outgoing = DCP.outgoingEdges(Current);
7 if Outgoing = ∅ then return None ;
8 else
9 if Current ̸= PathOrigin then Visited.insert(Current) ;

10 foreach Edge ∈ Outgoing do
11 if Edge.dstNode /∈ Visited ∧ ¬Edge.isLoopback() then
12 if PathReset = None then PathReset = Edge.isReset(Norm) ;
13 Reset = CheckPaths(Edge.dstNode, Visited, PathReset);
14 if Reset = True then PathReset = True ;
15 else if Reset = False then return None ;

16 return PathReset;

SCC to a new artificial variable, and finally we apply the mapping to variables of a DCP.
Please note that all algorithms referenced in this section were moved to Appendix in order
to save space.

The VFG construction process is presented in Algorithm 10. We use the OCamlgraph
library to and provide an implementation for the signature Node and Edge modules. In this
case, the inner data type of the Node module is the following tuple: (Exp.t * DCP.Node.t)
where the first value is a norm and the second one is a DCP location represented by a DCP
node. The Edge module remains empty (unit data type) because VFG does not store
any data on edges. We iterate through all DCs of each edge and search for DCs of form
𝑥 ≤ 𝑦+c, where both 𝑥 and 𝑦 must be non-constant norms and 𝑥 can be equal to 𝑦, i.e., we
process all kinds of updates involving variable norms unlike with the construction of a reset
graph. The 𝑥 norm is coupled with the DCP destination node to create a new destination
node of the VFG and the 𝑦 norm is coupled with the DCP source node to create a new
source node.

Next we proceed to create the (norm, location)→ v, i.e, VFGNode→ v mapping as
shown in Algorithm 11. We create a fresh artificial variable v for each existing SCC 𝜁
and use the iteration index to ensure that the name of each new variable is unique. The
associations between VFG nodes of each SCC 𝜁 and fresh variables v are stored in the
VFGMapping map.

Finally, we apply the VFG mapping and construct a new set of transformed DCs for each
DCP edge as shown in Algorithm 12. We combine appropriate norms of each DC with nodes
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of the current edge and use the constructed tuples as search keys for the VFGMapping map.
The map contains associations only for variable norms and we thus extend the mapping to
constants by using the original constant norms when we fail to find an association in the
map. The LhsNorm and RhsNorm variables are used to form the transformed DC which is
stored in the DCs set. Finally, we replace the set of original constraints with the DCs set for
each edge. Figure 5.8 shows an example of a DCP after the renaming transformation.

Exit

while [71:9]

while[71:9](false)

while [74:10]

while[71:9](true)
[var_0]' <= [var_0] - 1
[var_1]' <= [var_1] + 1

Begin [69:1]

[var_0]' <= [n]
[var_1]' <= [0]

while[74:10](false)
[var_0]' <= [var_0]
[var_1]' <= [var_1]

while[74:10](true)
[var_0]' <= [var_0]

[var_1]' <= [var_1] - 1

Figure 5.8: A flow-sensitive DCP obtained from the tarjan (4.1) example after the VFG
transformation.
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Chapter 6

Evaluation

This chapter experimentally evaluates our implementation of the Looper analyser. We first
verified the correct implementation of the abstraction algorithm and the bound algorithm
extended with reset chains and flow-sensitivity transformation and checked if it produced
expected results on few artificial examples. Next, we evaluated Looper on several code
examples from [12] to demonstrate its precision. Most of these examples are originally from
the SPEC CPU R○2006 [13] benchmark and focus on real world instances of problems requiring
amortized complexity analysis such as the aforementioned string parsing or pattern matching
algorithms. Finally, we evaluated Looper on a test set1 used by the Cost2 analyser in order
to get a fair comparison between both solutions and discuss limitations of either approaches.

6.1 Evaluation on the Cost Analyser Test Set
We evaluated Looper on the Cost test set to show that our analyser works well even on
non-cherry-picked code examples. These examples do not require amortized reasoning and
serve as a set of basic tests for our evaluation.

The complete test set contains a total of 62 functions from which we have selected
30 samples. The remaining 32 functions are mainly interprocedural tests or functions with
goto statements which we do not currently support. Moreover, the goto statement was used
for direct jumps into loops (or to simulate such behaviour) which we argue is uncommon as
opposed to real world usage of goto such as for error handling purposes in Linux Kernel3.
Additionally, four functions contained break, switch or continue statements which we
also do not support4. Finally, there were 8 cases with no loops at all which we ignored.

Table 6.1 presents the comparison between results of Looper and Infer’s Cost analyser
for the set of 30 selected samples. Looper managed to infer the precise bound in 24 cases
and imprecise bound in 3 cases. One imprecise bound was caused by insufficient guarding
concept from Section 4.2 which failed to infer a guard necessary for determining of a local
bound. Next imprecise bound was caused by a function which requires a path sensitive
reasoning. In the last case, Looper inferred imprecise bound 𝑛 instead of 𝑛

2 due to insufficient
abstraction algorithm which abstracts all decreasing DCs to 𝑥 ≤ 𝑥−1. However, the original
Loopus tool implements an extension which allows it to handle arbitrary decrements. We
argue though that this imprecision is negligible.

1https://github.com/facebook/infer/tree/master/infer/tests/codetoanalyze/c/performance
2https://github.com/facebook/infer/blob/master/infer/src/checkers/cost.ml
3https://koblents.com/Ches/Links/Month-Mar-2013/20-Using-Goto-in-Linux-Kernel-Code/
4However, the original Loopus tool implements extensions which allow it to handle some of these cases
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Precise Bounds Imprecise Bounds Errors *Time [s]
Looper 24 3 3 5.5
Cost 27 3 0 15.3

Table 6.1: An experimental evaluation of Looper on a subset of Infer’s test suite and
comparison with the existing Cost analyser. The complete test suite contains a total of
62 functions and the subset consists of 30 selected relevant examples. *The total time was
measured only on 27 functions which did not result in a crash of Looper.

The three remaining error cases crashed our analyser due to the complicated short-
circuiting of loop conditions which generate complex native Infer CFG and our LTS con-
struction algorithm failed to produce a valid LTS. We conclude that most of the imprecise
bounds and errors were caused by the shortcomings of our immature implementation rather
than by the general limitations of the adopted approach.

Cost analyser managed to infer the precise bound in 27 cases and imprecise bounds
in the remaining 3 cases, i.e., it was able to analyse all tests without any error. But, all
imprecise bounds inferred by Cost are unsound as it managed to infer a constant cost for
a test with non-deterministic termination and for another test which does not terminate
in all executions. The last unsound bound was inferred for the test which requires a path-
sensitive reasoning. Additionally, we optimistically classified the 2 + (3 × 𝑛) + 2 × (2 +
max(−1, 𝑛)) cost inferred for the test with 𝑛

2 real bound as correct due to our inability to
interpret the true meaning of the max(−1, 𝑛) term. Note that Cost was able to infer the
correct cost of 2+ (3×𝑛)+ 2× (1+max(0, 𝑛)) for a modified version with the bound of 𝑛.

The runtime comparison was conducted on a total of 27 functions which did not result
in a crash of Looper. The experiment was run on a Core i5-3320M processor at 3.30 GHz
running Ubuntu 16.04 with 64-bit binaries for both analysers. Infer was run in the multi-
threaded batch mode which analysed all tests in one go in order to avoid the non-negligible
startup overhead of Infer on individual analyses. In conclusion, our Looper was nearly
3 times faster than the current implementation of Cost analyser on a subset of their
test suite. The higher runtime of Cost presumably mainly arises from the internal use
of a relatively expensive invariant pre-analysis developed by the Inferbo [8] team for the
purposes of their buffer overrun analysis.

6.2 Evaluation on the Loopus Test Set
The second experiment was conducted on our test suite of 8 functions which require amor-
tized complexity reasoning in order to infer the precise bounds. The test suite consists of
functions selected from the benchmark [12] and is publicly available at our Bitbucket repos-
itory5. Note that while this benchmark may seem small, it contains challenging examples,
and hence it can accurately demonstrate the precision of one’s approach.

Table 6.2 presents the results and comparison of both analysers on our test suite which
was also used for evaluation of Looper in our Excel@FIT’19 [10] paper. However, we
have corrected few functions where we did not include non-deterministic conditions which
can affect the results of Cost analyser, hence the differences in examples no. 2 and 5
(originally 5𝑛 and 12𝑛, respectively). Additionally, we have remeasured the total runtime
in the batch mode and used it instead of the original per-example runtime which included

5https://bitbucket.org/paveon/infer-performance/src/looper-develop/examples/Loopus/
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the aforementioned non-negligible startup time of Infer. This allowed us to obtain a more
accurate measurement which should be closer to results in real world scenarios. Note
that the real bounds of examples no. 4 and 6 are actually 𝑛 + 𝑛 × max(𝑛 − 1, 0) and
3𝑛+max(𝑚1,𝑚2), respectively. For the sake of presentation, we have simplified all bounds.

Real Bound
Inferred bound Total Time [s]

Looper Cost Looper Cost

#1 𝑛 2𝑛 𝑛2

5.5 10.2

#2 2𝑛 2𝑛 𝑛2

#3 4𝑛 5𝑛 ∞
#4 *𝑛2 𝑛2 ∞
#5 2𝑛 2𝑛 ∞
#6 *𝑛 𝑛 ∞
#7 2𝑛 2𝑛 ∞
#8 2𝑛 2𝑛 ∞

Table 6.2: An experimental evaluation of Looper and comparison with the existing Cost
analyser on our test suite which consists of 8 functions selected from [12]. *The real bounds
of examples no. 4 and 6 were simplified.

Looper managed to infer the exact precise bound in 6 cases and reasonably precise
bound with the correct degree in the remaining two cases. The first example requires a path-
sensitive reasoning in order to infer the precise bound 𝑛 and the imprecision in example
no. 3 is introduced due to the flow-sensitivity transformation discussed in Section 4.3.6.
The transformation generates a redundant path in the corresponding reset graph and con-
sequently a redundant reset chain which adds additional 𝑛 to the total sum through the
IncrementSum(𝑎𝑡𝑜𝑚𝑠2(𝜅)) term of the modified ResetSum procedure 5.3. However, Looper
is able to infer the precise bound 4𝑛 with the flow-sensitivity transformation disabled.

Cost analyser failed to infer the precise bound in all cases. In 6 cases, it failed to
infer at least reasonably precise bound and returned∞. The remaining two cases produced
imprecise bounds with wrong polynomial degree which were expected from an analyser
without the support for amortized complexity analysis. Note that the inferred costs were
simplified to presented bounds based on the back-edge metric used by Looper.
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Chapter 7

Conclusion
In this work we extended the scalable abstract interpretation framework of the Facebook
Infer tool with a new performance oriented analyser. More specifically, we wanted to
focus on the somewhat lacking area of automated complexity and resource bound analysis
which was not supported by Infer at the time. Our solution recasts the existing powerful
intraprocedural Loopus [12] tool within incremental Infer.AI, allowing it to scale on a large
and quickly changing codebases. The Looper (Loopus in Infer) is currently able to analyse
both trivial programs with loops as well as moderately complex programs which require
amortized complexity analysis. The latter is where Looper outperformed the existing Cost
analyser currently developed by the Infer team.

Our future work will primarily focus on extending the current intra-procedural approach
to scalable inter-procedural analysis which would keep a reasonable precision. Additionally,
we plan to implement the remaining extensions proposed in [12], such as path-sensitive
reasoning which should greatly improve the precision of Looper. Lastly, we intend to devise
a mechanism similar to the one used by Cost which would track changes in the performance
footprint of each function between individual program revisions.

The preliminary results of this thesis were presented at the Excel@FIT’19 [10] conference
where it received an award from the expert committee.
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Appendix A

Additional algorithms

Algorithm 10: Construction of a Variable Flow Graph (VFG) from a DCP. Each
DC of form 𝑥 ≤ 𝑦 + c where 𝑥 and 𝑦 are variable norms is used to create two VFG
nodes represented by tuples (x, dst) and (y, src) where src and dst are source and
destination nodes of the corresponding DCP edge. These nodes are connected by an
empty VFG edge.

Input : A set of DCP edges
Output: A corresponding VFG

1 VFGraph = VFG.create();
2 foreach Edge ∈ DCP do
3 foreach DC ∈ Edge.constraints do
4 if 𝐷𝐶.𝑙ℎ𝑠𝑁𝑜𝑟𝑚 ∈ 𝒱 ∧𝐷𝐶.𝑟ℎ𝑠𝑁𝑜𝑟𝑚 ∈ 𝒱 then
5 DstNode = VFGraph.addNode((DC.lhsNorm, Edge.dstNode));
6 SrcNode = VFGraph.addNode((DC.rhsNorm, Edge.srcNode));
7 VFGraph.addEdge(SrcNode, (), DstNode);

Algorithm 11: Construction of a VFG mapping. The input VFG is split into strongly
connected components (SCC) and a fresh auxiliary variable v is created for each SCC.
VFG nodes of each SCC are mapped to the corresponding fresh variable.

Input : VFG VFGraph split into SCCs
Output: VFG mapping of form (norm, location)→ v

1 SCCs = VFGraph.computeSCCs();
2 VFGMapping = VFG.Map.empty();
3 foreach (𝜁, 𝑖𝑛𝑑𝑒𝑥) ∈ SCCs do
4 FreshVariable = Exp.Lvar(’var_’ + index);
5 foreach Node ∈ 𝜁 do
6 VFGMapping[Node] = FreshVariable;
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Algorithm 12: DCP renaming transformation. A VFG mapping 𝜎 is used to trans-
form all 𝑥 ≤ 𝑦 + c DCs on each edge 𝑒 into 𝜎(𝑥, 𝑒dst) ≤ 𝜎(𝑦, 𝑒src) + c.

Input : A set of DCP edges and VFG mapping VFGMapping
Output: Flow-sensitive DCP with renamed variable norms

1 foreach Edge ∈ DCP do
2 DCs = ∅;
3 foreach DC ∈ Edge.constraints do
4 LhsNorm = VFGMapping[(DC.lhsNorm, Edge.dstNode)];
5 RhsNorm = VFGMapping[(DC.rhsNorm, Edge.srcNode)];
6 if LhsNorm = None then LhsNorm = DC.lhsNorm ;
7 if RhsNorm = None then RhsNorm = DC.rhsNorm ;
8 DCs.insert((LhsNorm, RhsNorm, DC.const));
9 Edge.constraints = DCs;
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