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Abstract
Fixing one issue sometimes brings another ten to the program. To detect these issues,
especially performance issues, we often have to supply the program with input, that forces
its worst-case behaviour. A popular solution to automatic inputs generation is so called
fuzzing, however, its intention is to find functional bugs. In this work, we aim to construct
an automatic generator of inputs whose task will be to trigger performance fluctuations.
So we propose to tune fuzzing mutation rules and ways of processing the information about
program run, to particularly trigger the performance bugs. We integrate our solution into
a performance profile manager Perun, which stores information about every run as a profile
and is able to compare these profiles to check for performance change. Therefore we can
prove that executing with certain input takes more time or memory. We tested our fuzzer
on several artificial projects, which shows its potential with generated inputs that prolong
the runtime of the program. Such a solution would allow developers to regularly test every
version of a project for performance bugs and avoid them completely by automatically
finding new exhausting inputs before release.

Abstrakt
Oprava jednej chyby niekedy prináša do programu ďalších desať. Na odhalenie týchto chýb,
najmä výkonnostných, často musíme programu poskytnúť vstup, ktorý vynúti jeho sprá-
vanie pre najhorší prípad. Populárnym riešením pre automatické generovanie vstupov je tzv.
fuzzing, avšak jeho cieľom je nájsť funkčné chyby programu. V tejto práci sa preto snažíme
vytvoriť automatický generátor vstupov, ktorého úlohou bude vyvolať výkonnostné výkyvy.
Navrhli sme preto vyladené fuzzing pravidlá pre mutáciu a spôsob spracovania informácií o
behu programu so zámerom zachytiť výkonnostnú degradáciu. Naše riešenie je integrované
do nástroja Perun, správcu výkonnostných profilov, ktorý uchováva informácie o každom
behu vo forme profilu a je schopný porovnať tieto profily s cieľom detekovať zmenu vo
výkone. Takýmto spôsobom môžeme dokázať, že beh programu s určitým vstupom zaberie
viac času alebo pamäte. Náš fuzzer sme testovali na niekoľkých umelo vytvorených projek-
toch, kde ukazuje svoj potenciál generovanými vstupmi, ktoré markantne predlžujú dobu
behu programu. Prínosom takéhoto riešenia je možnosť pre vývojárov pravidelne otesto-
vať každú verziu projektu na výskyt výkonnostných chýb a vyhýbať sa im automatickým
vyhľadávaním nečakaných vstupov.

Keywords
performance bugs, fuzz testing, workload mutation, worst-case, algorithmic vulnerability,
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Rozšírený abstrakt
Prítomnosť chýb spôsobujúcich neočakávané správanie programov je nepochybne nepríjem-
nou a neodvratnou súčasťou ich vývoja. Na riešenie tohto problému sa v priebehu rokov
objavili rôzne typy nástrojov a metodík, ktorých hlavným cieľom bolo eliminovať (alebo
aspoň znížiť) výskyt týchto chýb a poskytnúť podporu programátorom pri vývoji kom-
plexnejších a rozsiahlejších programov.

Z hľadiska požiadavok na aspekty dnešného softvéru sa vývojári čoraz viac zameriavajú
na výkonnosť programov, najmä v prípade kritických aplikácií, ako sú tie, ktoré sú nasadené
v leteckom, vojenskom, zdravotníckom alebo finančnom sektore. Preto pred nasadením
akéhokoľvek produktu do reálneho sveta je prirodzené a nevyhnutné zabezpečiť, aby bol
dostatočne stabilný a zvládol očakávanú záťaž.

Výkonnostné chyby nie sú hlásené až tak často ako funkčné chyby a to z toho dôvodu,
že zvyčajne nespôsobujú pády programov, preto je ich odhalenie náročnejšie. Navyše sa
zvyknú prejavovať iba pri veľkých alebo špecifických vstupoch. Následná oprava však
nebýva zložitá, a tak skutočnosť, že niekoľko riadkov kódu môže výrazne zlepšiť výkonnosť
nás motivuje k tomu, aby sme venovali väčšiu pozornosť práve výkonnostným chybám už
na začiatku procesu vývoja. Keďže sa počas vývoja často vydávajú nové verzie, pravidelné
testovanie výkonnosti tých najnovších verzií by malo byť tým vhodným spôsobom pre včasné
nájdenie problému s výkonom.

Projekt Perun je open-source nástroj, ktorý slúži na automatizovanú analýzu výkon-
nostných zmien na základe nazbieraného výkonnostného profilu. Okrem toho spravuje tieto
profily, kde kadžý profil zodpovedá jednej verzii projektu. To pomáha používateľovi identi-
fikovať konkrétne zmeny kódu, ktoré mohli priniesť problémy s výkonom alebo kontrolovať
rôzne verzie kódu v prípade zhoršenia výkonnosti z dlhodobého hľadiska.

Neočakávané problémy s výkonom môžu viesť k vážnym zlyhaniam či k bezpečnostným
problémom. Avšak manuálne testovanie výkonu nie je triviálny proces a očakáva od testerov
povedomie o použitých štruktúrach a logike testovanej jednotky. Na rozdiel od toho au-
tomatizované testovanie prináša efektívnejší spôsob vytvárania testovacích prípadov, ktoré
môžu spôsobiť neočakávané výkyvy výkonu v cieľovom programe. Na tento účel je vhodné
prispôsobiť pokročilejšie techniky generovania testovacích dát, ako je fuzzing.

Fuzzing je testovacia technika používaná na nájdenie zraniteľností v aplikáciách ponúka-
ním zdeformovaných vstupných údajov a následným monitorovaním správania aplikácie.
Táto agresívna technika je impozantne účinná pri hľadaní chýb a zažíva veľký úspech pri
objavovaní bezpečnostných chýb. Tu vzniká myšlienka použiť fuzzing na hľadanie imple-
mentačných defektov ovplyvňujúcich výkon.

V súčasnosti existuje mnoho projektov implementujúcich techniku fuzz testovania, ale
nanešťastie žiadna z nich neumožňuje pridávať vlastné stratégie mutovania, ktoré by mohli
byť viac prispôsobené na cieľový program a hlavne na odhaľovanie výkonnostých slabín.

V tejto práci navrhujeme modifikáciu jednotky fuzz testovania, ktorá bude špecializo-
vaná na generovanie vstupov chamtivých na výpočtové zdroje. Navrhujeme nové mutačné
stratégie inšpirované príčinami výkonnostných chýb v reálnych projektoch a ich integrá-
cia do Perunu predstavuje novú techniku fuzzingu. Veríme, že kombinácia výkonnostného
testovania a fuzzingu by mohla zvýšiť podiel úspešne nájdených chýb počas procesu vývoja.

Naše riešenie odhalilo slabiny vo viacerých vytvorených projektoch pracujúcich s rôznymi
dátovými štruktúrami a škodlivými regulárnymi výrazmi, ktorých výkon markantne de-
gradoval pri spracovaní zmutovaných vstupov. Metodológia a výsledky tejto práce boli
prezentované aj na študentskej konferencii EXCEL@FIT’19 kde boli anotované ako ino-
vatívne so silným aplikačným potenciálom.
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Chapter 1

Introduction

‘Only conducting performance testing at the conclusion of system or func-
tional testing is like conducting a diagnostic blood test on a patient who is already
dead.’

— Scott Barber

The presence of errors causing unexpected behaviour of programs is undoubtedly an un-
pleasant and unavoidable part of their development. To tackle this problem, various types
of tools and methodologies have emerged over the years and their primary goal was to
eliminate (or at least reduce) the occurrence of these defects and to provide support for
programmers during development of more complex and extensive programs.

Nowadays, when talking about software aspects, developers are slowly shifting their
focus more on program performance, particularly in the case of mission-critical applications
such as those deployed within aerospace, military, medical or financial sectors. Naturally,
before deploying anything to the real world, it is essential to make sure that it is stable
enough to handle the expected load.

Performance bugs are not reported as often as functional bugs, because they usually do
not cause crashes, hence detecting them is more difficult. Moreover, they tend to manifest
with big inputs only. But, performance patches are usually not that complex. So the fact
that a few lines of code can significantly improve performance motivates us to pay more
attention to catching performance bugs early in the development process. In development,
new versions are frequently released, and regular performance testing of the latest releases
can be a proper way of finding performance issues early.

Perun: Performance Under Control [8], is a lightweight open-source tool which includes
automated performance degradation analysis based on collected performance profile. More-
over, it manages performance profiles corresponding to different versions of projects, which
helps a user in identifying particular code changes that could introduce performance prob-
lems into the project’s codebase or checking different code versions for subtle, long term
performance degradation scenarios.

Unexpected performance issues usually arise when programs are provided with inputs
(often called workloads) that exhibit worst-case behaviour. This can lead to serious project
failures and even create security issues. The reason is, that precisely composed inputs
send to a program may, e.g., lead to exhaustion of computing resources (Denial-of-Service
attack) if the input is constructed to force the worst case.
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Unfortunately, manually created test cases might not detect hidden performance bugs,
because it does not have to cover all cases of inputs. So in order to avoid this, it is
appropriate to adapt more advanced techniques such as the fuzzing.

Fuzzing is a testing technique used to find vulnerabilities in applications by sending
garbled data as an input and then monitoring the application for crashes. Even just an ag-
gressive random testing is impressively effective at finding faults and has enjoyed great
success at discovering security-critical bugs as well. Using fuzz testing, developers and
testers can ‘hack’ their systems to detect potential security threats before attackers can. So
why should not we use fuzzing to discover implementation faults affecting performance?

Currently, there are many projects implementing fuzz testing technique, but unfortu-
nately, none of them allows to add custom mutation strategies which could be more adapted
for the target program and mainly for triggering performance bugs.

In this work, we propose a modification of fuzz testing unit that will be specialised for
producing inputs greedy for resources. We propose new mutation strategies inspired by
causes of performance bugs found in real projects and integrating them within the Perun
as a new performance fuzzing technique. We believe that combining performance versioning
and fuzzing could raise the ratio of successfully found performance bugs early in the process.
The methodology and the results of this thesis were also presented in students conference
EXCEL@FIT’19 [11], and annotated as innovative with strong applicable potential.

Document structure. Chapter 2 contains a theoretical basis of fuzz testing principles,
along with overview of the existing fuzz testers that inspired this work. Subsequently,
Chapter 3 describes performance testing in collaboration with continuous integration and
the Perun tool, which implements this principle and for which needs this work has been
developed. The Chapter 4 then provides an analysis of the problem this work deals with,
together with a complete draft of our solution. The breakdown of the proposed algorithm
and the implementation details on which its parts are based includes Chapter 5. Finally,
the Chapter 6 summarises experimental testing together with the achieved results and their
analysis.
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Chapter 2

Fuzz testing

Fuzzing (fuzz testing) is a form of fault injection stress testing, where a range of malformed
inputs are fed to a software application while monitoring for failures [5].

The earliest reference to fuzzing dates back to 1989 when professor Barton Miller and
his class developed and used a primitive fuzzer that tested the UNIX applications [22].
These roots of fuzzing are captured in the article An Empirical Study of the Reliability of
UNIX Utilities by Miller, Fredriksen and So [14].

Fuzzing was discovered almost accidentally when one of the authors of the mentioned
paper experienced electromagnetic interference when using a computer terminal during
a heavy storm. This caused random characters to be inserted into the command line as
the user typed, which caused a number of applications to crash. The failure of many
applications to robustly handle this randomly corrupted input led professor Miller and his
colleagues to develop two tools: fuzz and ptyjig1, specifically to test application robustness
to random input.

In general, fuzz is a random character string generator. It allows users to define the limit
of generated output such as the maximum amount of characters, or by using only printable
characters, etc. Tool ptyjig is used to supply the random input to the target utility, which
input files must have the characteristics of a terminal device (e.g., the vi editor and the mail
program) [14]. After each test fuzz inspects the file system looking for a core file to determine
if an error has occurred. If such a file was found, it was saved together with the input that
caused the error.

Whilst such a simple black-box2 approach may sound naive, history has shown fuzzing to
be surprisingly useful at uncovering faults in a wide range of software systems [13]. Nowa-
days, many software development teams and companies like Cisco, Microsoft, or AT&T
fuzz their software on a daily basis with a purpose to find memory corruption bugs and
vulnerabilities automatically [7].

Unlike, e.g. static analysis tools, it is not necessary for a fuzzer to have access to
the source code of a target application in order to work. However, access to the source
code may help a fuzzing framework to improve its observational capability. For example,
by providing a feedback loop which drives the coverage of the different fuzzed inputs [6].

Fuzzing is a technique belonging to the group of negative testing (i.e. testing that
the system does not do things that it is not supposed to do), as opposed to positive testing
(i.e. testing that features work as specified). Software programs created for fuzz testing are

1Clone of fuzz and ptyjig — https://github.com/alipourm/fuzz
2Testing without peering into the internal structure of the component or system
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commonly called fuzzers. Sometimes we may encounter terms used to describe tests sim-
ilar to fuzzing, for example: robustness testing, protocol mutation, fault injection, syntax
testing, dirty testing, or rainy-day testing [23].

2.1 The Phases of the Fuzzing
By creating fuzz, Miller et al. also without intent defined a model of a general fuzzer.
Despite the fact that fuzzing has admittedly moved forward in the last years, all fuzzers
work in the following steps:

1. identify target, choosing the target application which will be tested;

2. identify inputs, determining what inputs the target application accepts;

3. generate fuzzed data, basically creating new input data;

4. execute fuzzed data, feeding the target application with newly generated input;

5. monitor for exceptions, watching the target application for interesting behaviour;

6. determine exploitability, analysing the behaviour and classifying the input.

These phases can be performed by one unit or by various independent units and imple-
mented using techniques with varying levels of sophistication. Each of the stages is briefly
described below.

2.1.1 Identify Target

In order to maximise the effect of fuzzing it is first necessary to analyse the target software
under test (SUT). The need for fuzz testing of a software depends mainly on possible risks,
accessibility for an attacker or impact of the user on a system. A good example of what
applications is literally essential to test are those that:

• work with valuable, personal or sensitive information;

• run in a privileged mode, higher than for common user;

• receive input over a network;

• has a specific file or library within, which are shared across multiple applications.

E.g. when a service is receiving some input from the network and is running with
Windows system level privileges, it is certainly tempting for an attacker. System services
and default components of operating systems represent big risk since potential successful
attacks can endanger a wide range of user population [5].

Domain-specific knowledge of the target program, such as used data structures or opera-
tions provided on the input data, allows to better adjust the fuzzer for the target application,
for example, by more specific and efficient methods for generating fuzz data.
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2.1.2 Identify Inputs

The main reason why fuzz testing experienced such a big success is that exploitable vulner-
abilities are caused mostly because the application is processing the input data vector with
insufficient validation. Authors of a book Fuzzing: Brute Force Vulnerability Discovery [22]
lists classes of inputs as follows:

• command line arguments,

• environment variables,

• web applications,

• file formats,

• network protocols,

• memory,

• COM objects,

• inter process communication.

Fuzzers can be adapted to many software areas, and help to uncover unexpected be-
haviour locally or even remotely. Since fuzz testing proved its quality, companies invest in
the developing of specific fuzzers on a different abstraction levels and with sundry function-
alities.

2.1.3 Generate Fuzzed Data

Once we identify the suitable inputs and analyse the SUT, we can generate new inputs.
Fuzzers can be divided with respect to how those inputs are generated. Fuzz data can
be generated using predetermined values, mutating existing data or generating data from
scratch. New test cases are generated as a whole before testing, or more often iteratively
generated on demand at the beginning of each test series. There exist two major categories
of fuzzers: generational and mutational.

Generational Fuzzer

Sometimes called grammar-based fuzzer. Generational fuzzer generates new inputs from
scratch based on a template or a grammar specification. The template defines precisely
the structure of the input file that is consumed by the target program.

A template should be accurate, detailed and include all possible options for every field
of the structure. This ensures that fuzzer generates valid data for control fields such as
checksums or challenge-response messages and thereby achieve a high level of coverage.
However, creating a bulletproof template tends to be time-consuming and complex process.

The generative method is usually used for simple models or protocols where construction
of a template has no significant cost. Although many of the applications works with defined
file formats or protocols (e.g. data serialisation formats, RFC standardised protocols, etc.),
there is no given standard specification for templates. Hence every fuzz generator has its
own design and methods for implementing the template [6].
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Mutational Fuzzer

Mutational fuzzer does not require any specification of input file format. Instead it is
initialised by a set of sample inputs (even one single sample file suffices). New workloads
are generated by applying of mutation strategies on these initial so called seeds.

Mutational-based fuzzers are typically less sophisticated, however, they also require less
domain knowledge such as used protocols, templates, etc. Computational work substitutes
a human effort in program understanding which makes this approach cheaper.

It is worthwhile to use mutational fuzzers, e.g. when the target program uses highly
structured inputs. Using mutations we do not have to accurate the entire complex structure
from the beginning, but use the existing one and modify it.

A decision, whether the input (either seed or mutation) is valuable and should be reused
for further work or discarded depends on several factors and it is not the functionality of
fuzzer itself but of fuzzing framework.

Unfortunately, the SUT may reject the mutated input at the beginning of processing
the data during validation since mutations can generate invalid format. Nevertheless, even
invalid inputs can sometimes lead to an interesting response from SUT. Consider the ex-
ample program in Listing 1, that reads a value from standard input and checks if the value
is three times smaller than a magic number, and only then continues.

1 #define MAGIC_NUM 42
2 int main(void) {
3 int value = read();
4 if (value*3 == MAGIC_NUM) {
5 doWork();
6 }
7 else {
8 err("Invalid input");
9 }

10 }

Listing 1: Example of a C program that will not do any work until correct magic number
is given.

If we work on an architecture where integers are stored on 4 bytes (32bits), the variable
value can store 232 different values, so the probability that it stores the correct magic
number and we hence execute the body of the function doWork() is 1 : 232.

Instead we could exploit the coverage information, and determine what code segments
were performed during testing. Discovering new paths will cause that the input would be
stored, so further mutation derived from it will have stronger potential.

Alternatively we could exploit the symbolic execution, a software testing technique that
analyse which inputs cause each part of a program to execute. On the other hand, the main
reason why symbolic execution does not outperform fuzzing is its high resource require-
ments, and most of the approaches do not scale on large applications.
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2.1.4 Execute Fuzzed Data

After we generate new inputs we have to execute the SUT again with them. The delivery
mechanism sends the generated data to the SUT input. This mechanism is closely related
to a nature of the input that application is consuming, since, e.g, the system which accepts
input from a file requires a different delivery mechanism than a system which accepts mouse
interaction events [13]. Execution is automated and can involve opening files, sending
packets, or running processes [22]. Note that the execution may take longer than previous
runs with seed inputs.

2.1.5 Monitor for Exceptions

What do we acquire when we send thousands of generated requests to a server and after
that, we find out that server crashed? Nothing. We do not know either which request
caused the crash nor why. Hence we must monitor the program constantly, after each new
test run. The monitoring system has to observe the SUT, while it processes each input
into the system and tries to detect anomalies, such as errors, deadlocks or performance
degradations.

The simplest method is to check the return code when the program terminates or stops
for some reason. The return code may explain the cause of the system crash as each standard
signal3 has its own signal number associated with it. However, these signal numbers may
vary on rare architectures.

More advanced methods of observation include more intrusive forms of monitoring ap-
plications, typically realised by attaching a debugger to the process [23]. One of these
debugging tools is ptrace4 (system call), that allows a process to inspect and control
the execution of other processes. Functionality of ptrace relies on several tools and one
of them is strace5 which monitors and manipulates interactions between processes and
the Linux kernel, including system calls, signal deliveries, or changes of process state. By
tracking the outputs of similar tools, we can detect anomalies for different types of inputs
either when opening or writing to files. For testing the memory we can list, e.g., Valgrind,
Guard Malloc, Insure++, etc. Alternatively we can use clang6 compiler sanitizers (ASan,
TSan, MSan, and UBSan) to detect memory errors, data races, undefined behaviour, or
overflows [20].

2.1.6 Determine Exploitability

The final part of fuzz testing is to analyse the potential vulnerabilities or anomalies and
thorough interpretation of results. The analysis typically requires a human to determine
whether the anomaly is really a vulnerability or if it is spurious. To facilitate developers
work, flaws may be collected and clustered together with a report. Errors, exceptions, and
their variations can be grouped into classes, which significantly reduces the total amount
of vulnerabilities that the developer has to investigate.

3signal — http://man7.org/linux/man-pages/man7/signal.7.html
4ptrace — http://man7.org/linux/man-pages/man2/ptrace.2.html
5strace — http://man7.org/linux/man-pages/man1/strace.1.html
6clang — https://clang.llvm.org/
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2.2 The Advantages of Fuzzing
Fuzzing is just one of plenty of techniques that can discover defects in a software, so why
should one use it? Considering many existing approaches, we list several reasons why fuzzers
have been widely accepted in the last years and under what terms is fuzzing the best applied.

Availability

In order to fuzz the SUT one needs only the runnable and does not need e.g. the source
codes or deep knowledge of SUT architecture. Since fuzzing does not require access to
the source code, it is also an open way to fuzz commercial products. The absence of source
code usually exclude the use of static analysis, model checking, etc [13]. However, even
though the source code is not needed for fuzzing, the analysis of the sources before actual
fuzzing may yield better results, and sooner.

Simplicity

The difficulty of the fuzzing mostly depends on the character of the SUT and the level of
the structure of input data. The elementary variant of fuzzing is the random data passed
to the target system, which is simple to develop, especially if the program is consuming less
complex inputs where the mutative approach is acceptable.

Low cost

Software engineering history has shown that test cases are more efficient when written by
someone other than the original programmer since a blind spot in implementation is likely
to also be repeated in testing [16]. Testers are expected to understand the implemented
system and its boundary cases in order to construct effective test cases. But this approach is
quite time expensive, and moreover, testers may overlook some aspects. To rely primarily
only on sets of manually developed test cases is deprecated and often the test suite can
be enhanced by results of performed fuzzing. Random data generation partially replaces
the tester’s work and will also cover cases that the tester and programmer would never
consider significant [13].

Effectiveness

We finish with the most important advantage: it works. For instance, the SDL (Security
Development Lifecycle) outlines fuzz testing for software verification, a mandatory pol-
icy established by Microsoft. Another example of successful fuzzing dates in April 2014,
when was disclosed the Heartbleed vulnerability in the OpenSSL library, which is used by
the majority of web servers. One of the most famous fuzzers AFL [25] found bugs in many
tools which are listed on AFL’s official website, including security-critical software such as
OpenSSL; OpenSSH and nginx; Mozilla Firefox, Internet Explorer and Apple Safari; and
other well-known software such as Libre Office or Adobe Flash [24].
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2.3 Fuzz Testing and Performance
The fuzzing approach seems to be the right choice for testing, thus we could also use it for
testing, where we won’t expect an error, but that the performance of the application will
deteriorate. To realise this idea, we need to modify some of the fuzz testing phases.

Generating input data should be fine-tuned to achieve better results, bearing in mind,
that the problem often causes processing amount volume of a data. While monitoring
the program, we are interested in the data of consumed memory, time, etc.; therefore it
is necessary to select a tool able to measure them, i.e. do profiling. It will also be differ-
ent to decide whether we have detected a performance issue, hence we need to compare
the measured values with some baseline expected values. After comparing, we get the re-
sult, and another problem is to decide whether the comparison result shows a decrease in
performance or not.

Obviously, besides fuzz testing, we can also encounter functional bugs in the tested
program. Although they are not essential from the performance view, if they do not cause
performance fluctuation, the output report should contain information about them as well.

2.4 Existing and Related Fuzzers
We will only list several selected fuzzers. In particular, the AFL which is the first widely
used fuzzer, and PerfFuzz, which is the first attempt to tune fuzzers for finding performance
bugs.

2.4.1 American Fuzzy Lop

AFL (american fuzzy lop) is an open source mutational fuzzer developed by Michał Za-
lewski. AFL features a colourful CLI that displays real-time statistics about the fuzzing
process such as the number of found faults, hangs, average program execution speed, total
AFL run time or how much time has elapsed since its most recent finds [25]. The simplified
algorithm is as follows:

1. Load a queue with initial seeds.

2. Take the next input from the queue.

3. Trim the input without affecting the target’s behaviour.

4. Mutate the input using selected fuzzing strategies.

5. Add the mutations deemed interesting to the queue.

6. Go to 2.

AFL can be used for both white-box7 fuzzing (supported languages are C, C++, and
Objective-C) and black-box fuzzing. Furthermore, other variations of AFL allow fuzzing
projects written, e.g., in Python, Go, GCJ Java or Rust.

7Testing with knowledge about the internal structure of the component or system
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afl­gcc afl­as afl­fuzz afl­analyze

Figure 2.1: Flowchart of AFL. Redrawn from the source: [24].

Before the fuzzing, an application must be first recompiled with afl-gcc, a drop-in
replacement for GCC or clang. Compiler output is passed to afl-as, a wrapper over as8,
that instruments the compiled target by injecting assembly code which captures branch
coverage. The output of afl-as is an executable binary that is passed to afl-fuzz which
fuzzes the input with the assistance of afl-analyze. The afl-fuzz element is also in
charge of printing the information about current fuzzing process on user interface. The final
part afl-analyze uses the instrumentation from afl-as (if provided), and observes if
the execution path of the CFG was changed. It communicates only with afl-fuzz to
improve further mutation [24][25].

AFL looks at each input file as a binary and modifies it using binary fuzzing strategies.
These strategies include:

• sequential or random bit/byte flips,

• sequential or random incrementing or decrementing integer values,

• sequential or random overwriting existing data with known integers (e.g., -1, 256,
1 024, MAX_INT),

• deletion, duplication and memset of data blocks,

• splicing two distinct input files at a random location.

Successful fuzzers live and die by their fuzzing strategies. Some of AFL’s strategies tend
to be more successful some less, but rare feedback loop is trying to increase their efficiency,
as the author of AFL, Michał Zalewski, narrates on his personal blog [26]. The feedback pro-
vided by the instrumentation injected into compiled program helps to optimise parameters
of fuzzing strategies. Together with its evolutionary design of the queue provide a feed-
back mechanism to distinguish between insignificant mutations and those that trigger new
behaviour.

This tool is precisely set to look for a variety of functional bugs and therefore can be
proud of its collection of detected functional bugs. However, AFL is not adapted to looking
for performance issues, neither by its mutation rules nor by program monitoring and related
feedback information that affects the evolutionary design of the queue.

2.4.2 PerfFuzz

State-of-the-art mutational fuzzers are primarily focused on finding functional bugs. Nev-
ertheless, recently a performance-oriented AFL variant called PerfFuzz was proposed.

PerfFuzz [10] is a coverage-guided mutational feedback-directed fuzzing engine that uses
multi-dimensional feedback in the AFL’s CFG graph method and additionally creates a per-
formance map to improve future usability estimation of tested input. The PerfFuzz authors

8AS — the portable GNU assembler — http://man7.org/linux/man-pages/man1/as.1.html
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defined the performance map as a function 𝑝𝑒𝑟𝑓𝑚𝑎𝑝 : 𝐾 → 𝑉 , where 𝐾 is a set of keys
corresponding to program components (CFG edges) and 𝑉 is a set of ordered values (exe-
cution counts of CFG edges). This enables PerfFuzz to find inputs that exercise noticeable
hot spots in a program and generate inputs with higher total execution path length than
previous approaches by escaping local maxima. Experiments on sorting algorithm Insertion
Sort, PCRE URL regular expression and others show the method is effective at generating
inputs that demonstrate algorithmic complexity vulnerabilities.

Results of comparison with AFL show, that AFL initially finds a hot spot with higher
execution count, but it did not grow more. On the other hand, PerfFuzz finds a hot spots
with over 2× - 18× higher execution counts after 6 hours of lasting experiments [10].
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Chapter 3

Performance testing

In this thesis, we aim to switch the focus of fuzzing from detecting functional bugs to
uncovering performance bugs. We wish to apply the fuzzing in the performance testing —
technique for determining how well has the system been designed from a performance point
of view. In this chapter, we describe the basics of performance testing and its importance
in the software development life cycle.

The performance testing is the process of measuring the efficiency of a software program,
system or a device. This procedure usually includes quantitative tests, such as measuring
the response time or the number of MIPS (millions of instructions per second) at which
a system operates, and qualitative tests determining system attributes such as reliability,
scalability, or interoperability. In general, performance testing verifies whether a system
meets the specifications claimed by its manufacturer or vendor [17].

3.1 The Importance of Performance Testing
From the business perspective, poorly performing software programs do not commonly bring
the planned benefit to an organisation, and therefore cannot be considered as a reliable asset.
Regardless of causalities, this makes a bad reputation on the designers, coders, testers, and
other people involved in its development process.

One can ask, when is an application considered to be performing badly or well? There
does not exist any guide from generic industry standard which determines good or bad
performance. Nevertheless, various informal attempts to define a standard was proposed
defining e.g. minimum page refresh time within browser-based applications [15].

Performance testing should detect what needs to be improved before the product is
released. Without it, software is probably going to suffer from problems such as poor us-
ability, slow response when a higher number of users use it at the same time, or discrepancies
across different operating systems. But, the resulting system crash can be really expensive.
In August 2013, only a 5-minute downtime of Google.com was estimated to cost the search
giant as much as $545 000. At the same summer, companies lost sales worth $1 100 per
second because of Amazon Web Service outage [12].
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3.2 Functional vs Performance Testing
Over the past decades, most of the research teams’ attention has been particularly focused
on the development of tools for automatically detecting functional bugs.

Similar tools for performance area have been developed, however, considerably less
frequently, thus performance deficiencies have been perceived as less critical and often
difficult to detect. But, especially in recent years, it has been shown that the severity
of performance errors is in general almost comparable to functional errors, and in extreme
cases, these errors can lead to practical unusability of programs, for example, when working
with larger amounts of input data.

Nowadays, there are many tools that are able to detect these errors more or less satisfac-
torily. Usually we are talking about profiling tools, whose success depends on appropriately
selected inputs. Performance bugs have the unpleasant character that their manifestation
often occurs only when working with a larger volume of data, or only with specifically
constructed input data. Nevertheless, if we choose too large data it can on the other hand
significantly prolong the time of testing. In addition, it is often difficult to estimate the fu-
ture overhead of real deployment of the product, and the errors can occur in the later phase
of software life.

Conducting performance testing simultaneously with functional testing is more favou-
rable and will add more benefits to the overall software quality. Adequate planning for
conducting functional and performance testing should be done in order to keep a strong
relationship among the involved parties of the project [4].

However, what if a develop company wants to sidestep the planning but still carry
out the performance testing on a regular basis? Perfect solution would be to automatise
this process and perform the performance testing whenever a developed project registers
a significant change, e.g. when releasing a new version. In the next Chapter, we will
introduce to the solutions for managing performance testing.

3.3 Perun: Performance Version System
Perun (Performance Under Control) is an open-source project founded by T. Fiedor, within
the VeriFIT research group. Its main objective is to automate management of program’s
performance profiles. It basically builds on a version control systems1(VCS) that are ex-
tended with the performance records (such as time or memory consumption) for each ver-
sion.

Its main idea is to capture performance changes during the development by comparing
performance profiles that are bound to the particular program versions. Perun can be
integrated into an already used versioning system to ensure that for each new version of
the project there will be created performance profile (for example, with every commit in
the versioning system).

In short, Perun is a wrapper over existing version systems and manages profiles for
different versions of particular projects. Besides that, it offers a tool suite allowing one to
automate the performance regression test runs, postprocess existing profiles or interpret
the results [8].

1systems that records changes of source code files over the time so that one can recall specific version
later

15



3.3.1 Architecture
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Figure 3.1: View, logic, and data together
form the Perun tool architecture, adopted
from [8].

The implementation of Perun consists of
three logically partitioned units: data,
logic and view. The data part is respon-
sible for persistent storing and managing
generated performance profiles, and also for
interface to supported VCS.

The importance of the logic part con-
sists of management, manipulation, and au-
tomation of profile creation. It includes set
of data collectors (trace, memory, time) for
profile generation, and set of postprocessors
used for profile transformation.

The view is a stand-alone package that
provides interaction with the user using
the input-output interface. This can be re-
alised by the graphical [9] (not merged in
master branch) or command line interface. At the end, the results of profiling data analysis
are visualised by one of the visualisation techniques. An illustration of described architec-
ture and selected Perun modules is in Figure 3.1.

3.3.2 Automatic Run of Job

Using Perun’s runner infrastructure, one can run a series of steps run-collect-postprocess
with defined parameters in order to generate a profile. During the profiling of application,
we first collect the data by the means of profiling data collector, and further augment
the collected data by ordered postprocessing steps (e.g. for filtering out unwanted data,
normalising or scaling the amounts, etc.). As results we generate one profile for each
application configuration and each profiling job.

Configuration of application for profiling is partitioned into three parts:

• command: the actual command that is being profiled, e.g. ls

• arguments: set of arguments for command, e.g. -al

• workloads: input workloads, e.g. /usr/share

Perun allows automatic collection of profiling data based on a pre-stored local or shared
configuration, which is mainly used for regular performance analysis of project versions.
The base of automation in Perun are job matrices, which are determined by a commands,
arguments, workloads, collectors and postprocessors (and their internal configurations).
The user can define custom matrices in the local settings (file local.yml), thus summarise
the whole profiling process with one command perun run matrix. The job matrix format
is shown in Listing 2. In case of irregular or specific creation of performance profiles, Perun
offers the possibility to define a single job specification within options of perun run job
command, as shown in Listing 3.
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cmds:
- ./my_bin

args:
- --less

workloads:
- workload.txt

collectors:
- name: memory

params:
- sampling: 1

postprocessors:
- name: normalizer
- name: regression_analysis

params:
- method: full
- steps: 10

Listing 2: An example of local.yaml file containing a simple job matrix with required
information about the selected collector, the command that will be profiled, and the other
specifications such as arguments, workloads, and additional parameters for collector and
postprocessor.

perun run job --cmd ./my_bin --args --less --workload workload.txt \
--collector memory --collector-params memory memory-params.yaml \
--postprocessor normalizer --postprocessor regression-analysis \
--postprocessor-params regression-analysis ra-params.yaml

Listing 3: Running the job with the same configuration as in Listing 2, but using perun
run job command. Additional parameters for collector and postprocessor are included in
files memory-params.yaml and ra-params.yaml.

3.3.3 Performance Profile

Profiles store performance records collected by one of the collectors. Generated profile can
be then postprocessed multiple times by any of the postprocessing units, in order to e.g.
normalise or filter the values [8]. In persistent storage each generated profile is assigned
to appropriate so called minor version origin (e.g. concrete commit in git VCS). A profile
can be further visualised, since even a simple interpretation of outcome may be oftentimes
more descriptive and lead to better understanding of program’s performance. All these
operations over a performance profile together symbolise the lifetime of the profile, captured
in Figure 3.2.
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Figure 3.2: Lifetime of performance profile. Taken from [8].

Collected data are stored as a profile with format based on JSON2. The motivation
is, that JSON-like structured data are easy to read and understandable for human and for
computers which is reflected in wide support of programming languages offering an interface
for operations over JSON formatted files.

Profile format requires several restrictions regarding the keys (or regions) that needs to
be defined inside. Listing 4 displays the topmost structure of the profile format. Perun
project documentation [8] describes format in details, we briefly outline each topmost region:

• origin: a hash key specifying concrete minor version of project, to which profile
corresponds to. Origin links the performance records to functional changes.

• header: dictionary containing basic specification of the profile, like e.g. the actual
command which was profiled, its parameters and input workload.

• collector_info: configuration of collector, which was used to capture resources and
generate the profile.

• postprocessors: list of configurations of postprocessors in order they were applied
to the profile.

• snapshots: list of resources that were actually collected by the specified collector.
2JavaScript Object Notation — https://www.json.org/
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{
"origin": "",
"header": {},
"collector_info": {},
"postprocessors": [],
"snapshots": [],

}

Listing 4: The generic scheme of profile format, adopted from [8].

3.3.4 Data Collecting and Profile Generating

Profiling data are collected by collection which generate performance profiles (i.e. the set of
performance records). Perun framework currently includes these implemented collectors:

• Trace: based on SystemTap3, collects running times of C/C++ functions. It is
suitable to postprocess the collected data using the regression analysis, since they
capture dependency of time consumption depending on the size of the structure.
Then, we can plot individual points along with regression models using scatter plot
visualisation technique.

• Memory: collects allocations of C/C++ functions, target addresses of allocations,
type of allocations, etc. These collected data are suitable to visualise by the heap
map4.

• Time: a simple wrapper over the time utility that captures overall running time of
a program.

3.3.5 Postprocessing

Once a profile is created, we can apply a sequence of postprocessing steps in order to
transform its data. Perun framework currently offers five postprocessors:

• normaliser: normalises the resources of the same type to the interval (0, 1), where 1
corresponds to the maximal value of the given type.

• regression analysis: attempts to find the fitting model (linear, quadratic, logarith-
mic, etc.) for a dependent variable based on another independent one. E.g. the de-
pendency of function runtime depending on the size of the underlying structure.

• clusteriser: tries to classify resources to uniquely identified clusters or to group
similar amounts of resources.

• regressogram: non-parametric method, which tries to fit models through data by
dividing the interval into 𝑁 equal buckets, where a bucket value is a result of selected
statistical aggregation function (mean/median).

3SystemTap — https://sourceware.org/systemtap/documentation.html
4graphical representation of data which values contained in a matrix are represented by colours
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• moving average: non-parametric approach, which uses the analysis of data points
by creating a series of values based on the specific aggregation function; values are
derived from different subsets of the full data set.

• kernel regression: non-parametric technique that estimates the conditional expecta-
tion of a random variable by placing a weighting function (kernel) over each estimated
data point.

3.3.6 Automatic Detection of Performance Changes

Perun offers an automatic check for performance changes between two isolate profiles
(so called baseline and target profile), with the same configuration (i.e. collected by same
collectors, postprocessed using same postprocessors, and collected for the same combination
of command, arguments and workload). These profiles may be registered in index (i.e.
assigned to the concrete minor version), stored in pending profiles or simply stored in
the filesystem. Usually the baseline corresponds to previous stable version (e.g. the previous
head) and target to new untested version (e.g. new head or commit).

For such a pair of target and baseline profiles, we can use several methods, which
can then report multiple performance changes. Potential changes of performance are then
reported for these pairs of profiles, together with more precise information. This information
then helps a developer to evaluate whether the detected changes are real or spurious.

Perun framework currently supports the following strategies for detection of the per-
formance changes:

• Average Amount Threshold: computes averages for each unique group of re-
sources, and consider them as a representation of the performance. Each average of
the target is then compared with the average of the baseline and if their ratio ex-
ceeds a certain threshold interval, the method reports the change (optimisation or
degradation).

• Best Model Order Equality: checks for each unique group of resources, whether
the best performance (or prediction) model has changed. The result can be e.g. that
the best model changed from linear to quadratic.

• Fast Check: simple method, based on the subtraction of best-fit models and subse-
quently interleaving of these data by newer models.

• Linear Regression: heuristic based on the results of linear regression models, which
models the relationship between independent variables 𝑥 and dependent variables 𝑦
as function 𝑦 = 𝑏0 + 𝑏1 · 𝑥. The heuristic compares the coefficients 𝑏0 (y-intercept)
and 𝑏1 (slope).

• Polynomial Regression: represents the change in a form of 𝑛𝑡ℎ degree polyno-
mial function [21]. This heuristic tries to find the best fit 𝑛𝑡ℎ degree polynomial for
subtraction of best baseline and target models.

To summarise, Perun allows automatic detecting of performance changes between var-
ious minor versions within the history with the aim to protect the project from potential
performance degradation.
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Chapter 4

Analysis and Design

The underdeveloped field of performance fuzz testing has inspired us to explore this issue
more and extend the Perun tool with fuzzing module that will try to find new workloads
(or inputs) that will likely cause a change in program performance. We will start with
a motivational example as an introduction to the problem, then we analyse the problem
and finally we will propose the solution together with a short explanation of the principles.

Often, the overall performance of a program highly depends on its input data (if it
consumes any). Although manually written tests can cover even 100% of the code, test
cases may not reveal hidden vulnerabilities until the unusual input data are provided.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #define DIGITS 2
4

5 void doSomething(void){ return; }
6

7 int main(void){
8

9 FILE * fp = fopen("workload.txt","r");
10 char array[DIGITS];
11 for(int i=0; i<DIGITS; i++)
12 array[i] = fgetc(fp);
13

14 unsigned number = atoi(array);
15 for(unsigned i=0; i<number; i++)
16 doSomething();
17 }

Listing 5: Example C program that shows a vulnerability when signed integer is assigned
to unsigned integer variable.

In Listing 5 one can see an example program, which reads two characters from an input
file (expecting it contains numerical values), stores them in an array and then converts
the array to an integer using standard atoi1(array to integer) function. The original in-

1atoi — https://en.cppreference.com/w/cpp/string/byte/atoi
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tention was to avoid large numbers and only take two digits into account, so the number
should be out of interval < 0, 99 >. But, this solution contains hidden vulnerability. On
the highlighted line, the result of converting is assigned to unsigned integer variable, but
the return value of atoi function is a signed integer. In case that the input file will con-
tain for example string ’-1’, atoi will successfully convert the string to an integer -1, which
is represented as 0xFFFF FFFF in hexadecimal (on architecture where integers are stored
on 4 bytes). Considering that the variable number is defined as unsigned integer, the fol-
lowing loop will call doSomething function UINT_MAX(232-1) times leading to performance
degradation.

4.1 Problem Analysis
Basically, the goal of this work is to generate new input data that could possibly exercise
(i.e. consume as many resources or time as possible) the target program the most. We
believe that employing the fuzz technique could help create such new input data. We
propose that for the purpose of lightweight fuzz testing mutational methodology is more
preferable. Mutational strategies should be more oriented and tuned for performance.
Although traditional mutation strategies were built rather for finding functional faults,
certainly it is good to combine them with the performance tuned ones.

In conjunction with Perun tool, the approach of regular performance testing, the user
could find with each new version new workloads that cause a problem and keep track
of the progress of project performance power over time. After fixing the bug of certain
performance issue revealed by the fuzzer, the user is able to test the target application
performance again either with the worst-case workloads assigned to earlier versions or by
repeatedly performing the fuzz testing. Because fixing one bug may sometimes create new
ones.

4.2 Requirements for Fuzz Unit
In this section we briefly summarise the functional requirements and specifications of the re-
sulting product.

1. New mutation rules. The product must offer new, reasonably designed and perfor-
mance affectable rules. The group of rules need to be general, not focusing on the only one
type of potential performance problem.

2. Classic rules. The existing fuzzers have implemented them, and they have achieved
the success, therefore it is advisable to add some classic generally used mutation rules to
our collection of rules.

3. Perun influence. This means selecting inputs for mutation mainly according to
the Perun results, because it is the main difference from the existing performance fuzzers.

4. Workload picking based on coverage. Since the fuzzing is a brute-force technique,
we do not want to test with Perun every workload, just interested in terms of amount
of executed code. Note that Perun testing would be often unnecessary and process of
collecting, postprocessing and detection brings a considerable overhead.
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5. Interpretation of workloads. We think that after finishing the fuzz testing, testers
primarily want to know what workloads are making the troubles to application and how
they differ from the original files.

6. Interpretation of fuzzing. For better imagination of the finished fuzzing process,
fuzzer should offer visualised information about it that can be helpful for future fuzzing.

4.3 Design of Performance Fuzzer
We have already described the general fuzz testing in Section 2.1. The described steps
must be implemented accordingly to what the unit should be focused on. In this work
we construct a lightweight Mutation Based Fuzzing Tool tuned for detecting performance
changes, i.e. performance optimisations and degradations.

The proposed solution will be modifying files (one of the most common format of pro-
gram workload). We believe that the mutational approach is more suitable in order to create
new workloads. Existing projects inspired us to implement the feedback loop with coverage
information, for the purpose of increasing the efficiency and chances to find the worst-case
workloads. Another feedback will be obtained from Perun, which automatically detects
performance changes based on the data collected within the program runtime.

4.3.1 General Description of the Algorithm

In this section we will describe design of performance fuzz tester. Its main loop is depicted
in Listing 6.

An inevitable element for starting the fuzzing is to collect suitable set of sample seed
inputs (or workloads), also called input corpus. In classical fuzzing methods we work with
so called inputs, however, in this work we will adapt the terminology of Perun, which calls
the input of programs the workloads. The seeds should be valid workloads for the target
application, so the application terminates on them and yields expected performance. Col-
lecting workloads into the corpus is done by pseudo function get_initial_corpus within
the overall performance fuzzing algorithm captured in Listing 6. In our fuzzer, the seeds
will be provided by the user.

For different file types (or those of similar characteristics) we want to use different groups
of mutation methods (function choose_rules_according_to_filetype) as described in
Section 4.4. The knowledge that seeds are text files, not binaries, allows fuzzer to avoid
binary-tuned fuzz methods (e.g. random removing zero bytes, . . . ). So, we apply domain-
specific knowledge for certain types of files to trigger the performance change or find unique
errors more quickly.

Before running the target application with newly generated malformed workloads, it
is necessary to first determine the performance baseline, i.e. the expected performance of
the program, to which future results (so called targets) will be compared. In initial testing
we first measure code coverage (number of executed lines of code) while executing each
initial seed. The median of measured coverage data is then considered as the baseline for
coverage testing (base_cov variable). Second, Perun is run to collected memory, time
or trace resource records with initial seeds resulting into baseline profiles (base_profile).
Practically performance baseline is a profile describing the performance of the program on
the given workload corpus. After the initial testing, the seeds in the corpus are considered
as parents for future mutations and rated by the evaluation function.
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Once we assemble initial seeds, we can start the actual fuzzing. The fuzzing loop itself
starts with choosing one individual file from corpus (function choose_parent) using heuris-
tic described in Section 5.6.1. This file is then transformed into mutations (function fuzz)
and their quantity is calculated using dynamically collected fuzz stats (see Section 5.6.2
for more details). We test every mutation file with the goal to achieve maximum possi-
ble code coverage. We first focus on gathering the interesting workloads, which increase
the number of executed lines. We argue that coverage based testing is fast and can yield
satisfying results. Later we will combine these results with the performance check, which is
slower. In case that, code coverage exceeds the certain threshold, responsible mutation file
joins the corpus and therefore can be fuzzed in future to intentionally trigger more serious
performance issue. Each parent joining the corpus gets rated, in this phase only according
to reached coverage.

1 results = []
2 corpus = get_initial_corpus()
3 mutation_rules = choose_rules_according_to_filetype(corpus)
4 base_cov = init_cov_test(corpus)
5 base_profile = init_performance_test(corpus)
6 rate_parents(corpus)
7 # Fuzzing loop
8 while timeout not reached:
9 interesting workloads = []

10 # Coverage-guided testing
11 while execs_limit not reached and collected_files_limit not reached:
12 candidate = choose_parent(corpus)
13 muts = fuzz(candidate, mutation_rules, fuzz_stats)
14 # Gathering interesting mutations
15 interesting_workloads += test_for_cov(muts, base_cov, icovr_ratio)
16 corpus += interesting_workloads
17 rate_parents(interesting_workloads)
18 update_stats(fuzz_stats, interesting_workloads)
19 adapt_icovr_ratio(icovr_ratio)
20 # Profile-guided testing
21 results += test_with_perun(interesting_workloads, base_profile)
22 update_rates(results)
23 update_stats(fuzz_stats, results)

Listing 6: Pseudocode of Performance Fuzzing Algorithm.
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After gathering the interesting workloads, the fuzzer collects run-time data (memory,
trace, time), transforms the data to a so called target profile and checks for performance
changes by comparing newly generated target profile with baseline performance profile
(see [18] for more details about degradation checks). Then the tested workloads rates
have to be recomputed to include the performance change result (function update_rates).
The intuition is, that running coverage testing is faster than collecting performance data
(since it introduces certain overhead) and collecting performance data only for possibly
newly covered paths could result into more interesting workloads. According to the number
of gathered workloads we adapt the coverage increase ratio, with an aim to either mitigate
or tighten the condition for classification a workload as an interesting one.

List of results of each testing iteration in the main loop contains successful mutations
and the history of the used rules, that led to their current form. This information is up-
dated after each test run to make the best decisions at any time. Moreover, collecting
interesting workloads is limited by two variables: the current number of program execu-
tions (execs_limit) and the current number of collected files (collected_files_limit).
The first limit guarantees that the loop will terminate. On the other hand, this limit of
executions could be set to excessively high value, which would lead to a long duration of this
phase, especially if the test program itself is used to run for a longer time. The second limit
ensures the loop will end in reasonable time and collects reasonable number of workloads.

4.3.2 Absence of Source Files

We can collect line coverage only in the presence of source files. Nevertheless, the fuzzer
should provide fuzz testing even without them. In that case we skip the first (and fast)
testing phase and only checks for possible performance changes. In Listing 7 is captured
an algorithm in pseudocode, relying only on results of Perun’s detection of performance
change.

1 results = []
2 corpus = get_initial_corpus()
3 mutation_rules = choose_rules_according_to_filetype(corpus)
4 base_profile = init_performance_test(corpus)
5 rate_parents(corpus)
6 # Fuzzing loop
7 while timeout not reached:
8 candidate = choose_parent(corpus)
9 muts = fuzz(candidate, mutation_rules, fuzz_stats)

10 # Profile-guided testing
11 results += test_with_perun(muts, base_profile)
12 corpus += results
13 rate_parents(results)
14 update_stats(fuzz_stats, results)

Listing 7: Variation of pseudocode of Performance Fuzzing Algorithm without the access
to source files.
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4.4 Mutation Strategies
In general, the goal of mutational strategies is to randomly modify a workload to create
a new one. We will present a series of rules inspired by performance bugs found in real
projects, and general knowledge about used data structures, sorting algorithms, or regular
expressions.

Both the types of workloads and the rules for their modification are divided into two
basic groups: text and binary. In addition, we added specific rules for XML format based
files. Each rule has its own label name (T stands for text, B for binary and D for domain-
specific), with a brief description of what it concentrates on and the demonstration result
of its application on some sample data.

4.4.1 Text File Strategies

The following rules are constructed strictly for text files. Suppose the seed workload for
fuzzing is the file with the string:

‘the quick brown fox jumps over the lazy dog’.

Rule T.1: Double the size of a line. This rule focuses on possible performance issues
associated with long lines appearing in files. The inspiration comes from the gedit2 text
editor, which shows signs of performance issues when working with too long lines even in
small text files. Another potential performance issue that this rule could force is a poorly
validated regular expression that could be forced into lengthy backtracking while trying to
match the whole line.
‘the quick brown fox jumps over the lazy dogthe quick brown fox jumps over
the lazy dog’

Rule T.2: Duplicate a line. Similar to the previous rule, but instead extends the file
vertically. Suppose that there is a line in a file that represents a performance vulnerability
but does not manifest in small sizes, therefore the degradation would not be detected. By
multiplying the line we can likely trigger the vulnerability and this could lead to a decline
in performance.
‘the quick brown fox jumps over the lazy dog
the quick brown fox jumps over the lazy dog’

Rule T.3: Divide a line. Similarly to Rule T.2, the rule may pose a threat to programs,
whose performance does not depends so much on the length of the line as the number of
lines in the workload file. Moreover, the rule can be effective for regular expressions match-
ing whole lines. The line will be cut, which means it will not contain what the regular
expression would expect, and could force backtracking.
‘the quick brown fox jumps o
ver the lazy dog’

2gedit — https://wiki.gnome.org/Apps/Gedit
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Rule T.4: Change random character. This is traditional fuzzing method since the emer-
gence of fuzzing, which can trigger unexpected behaviour for various reasons. While this
is not a specific rule for performance, in PerfFuzz [10] authors found interesting workloads
even with basic mutation rules.
‘the qu1ck brown fox jumps over the lazy dog’

Rule T.5: Repeat random word of a line. On vulnerabilities, e.g., in a handler when
a program is trying to store what has been read and the record already exists (hash table, or
user registration to a database). Further, in situations where the program expects unique
input data, e.g. sorting algorithm QuickSort reaches its worst-case when all the elements
are the same [3].
‘the quick brown fox jumps over the lazy dog dog dog dog dog dog dog dog’

This pair belongs to the rules that focus mainly on sorting algorithms and searches in data
structures. According to [3], QuickSort exhibits worst-case 𝑂(𝑛2) behaviour also when
the elements are sorted or reversely sorted. We expect that similar behaviour could hold
for the other sorting algorithms, searching algorithms (and their heuristics), and others
which assume randomly sorted workload. The result is showing which words change their
position within the line and which not when sorting in ascended and descended order.
Rule T.6: Sort words or numbers of a line.
‘brown dog fox jumps lazy over quick the the’

Rule T.7: (Reversely) sort words or numbers of a line.
‘the the quick over lazy jumps fox dog brown’

The following rules are focused on the efficiency of the program white character handling.
The inspiration lies in the well-known StackOverflow outage on July 20, 2016. The reason of
the outage was regular expression ˆ[\s\u200c]+|[\s\u200c]+$ intended to trim unicode
space from start and end of a line. If the string to be matched against contains e.g. 20 000
space characters in a row, but after the last one there is a different character, Regex engine
expected a space or the end of the string. Realising it cannot match like this it backtracks,
and tries matching starting from the second space, checking 19,999 characters, then from
third space and so on [2]. Similar deployment of the seemingly harmless regular expression
could be detected with the help of these rules.

Rule T.8: Append whitespaces. Sometimes we want to trim a line, i.e. remove
the white characters from the front or back. This rule simply adds 100 to 1 000 whitespaces
at the end of the line. The amount of whitespaces is chosen from the same interval for
every rule in this group.
‘the quick brown fox jumps over the lazy dog␣␣␣␣␣␣␣␣␣␣␣␣...␣␣␣␣␣␣␣␣␣␣␣␣’

Rule T.9: Prepend whitespaces. A follow-up rule that adds white characters to the be-
ginning of a line.
‘␣␣␣␣␣␣␣␣␣␣␣␣...␣␣␣␣␣␣␣␣␣␣␣␣the quick brown fox jumps over the lazy dog’
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Rule T.10: Insert whitespaces on a random place. This mutation can split data into
multiple parts. For applications relying on CPU caching this rule could force load of gaps
in the memory (which are often useless data), and therefore application may slow down.
‘the quick brown fox jum␣␣␣␣␣␣␣␣␣␣␣␣...␣␣␣␣␣␣␣␣␣␣␣␣ps over the lazy dog’

Rule T.11: Repeat whitespaces. Follows the same principle as the previous rule, with
the difference that spaces will be in the same place only larger. If the input has a more strict
format, then the previous rule will not succeed because it breaks the input data format. In
this case the spaces will be multiplied and the structure may not necessarily be corrupted.
‘the quick brown fox jumps over the␣␣␣␣␣␣␣␣␣␣␣␣...␣␣␣␣␣␣␣␣␣␣␣␣lazy dog’

Rule T.12: Remove whitespaces of a line. This method removes any white spacing of
a line, and thereby creates continuous data. When using a hash table, two complications
can occur: (a) the hash function could calculate the index for a long time, (b) always new
unique data could quickly fill the table, and thereby enlarging the hash table. A similar
case is when a program expects a space after e.g. 10 characters and it is missing in the file.

‘thequickbrownfoxjumpsoverthelazydog’

The traditional rules that deletes random parts of the data are inspired by fuzz testing
cores. Removing of some elements may lead to, e.g., the parser waiting for some character
or string or number. This rule could also be effective in the case of regular expression
backtracking, again.

Rule T.13: Remove random line.
‘the quick brown fox jumps over the lazy dog’
Rule T.14: Remove random word.
‘the quick brown fox jumps over the lazy dog’
Rule T.15: Remove random character.
‘the quick brown fox jumps over the lazy dog’

4.4.2 Binary File Strategies

We propose the following rules for binary files. In case of binary files we cannot apply
specific domain knowledge nor can we be inspired by existing performance issues instead
we mostly adapt the classical fuzzing rules. Let us assume binary file with the following
content:

‘This is !binary! file.\0’.

The following two rules are based on the fact, that in C language, the string is considered
to be a series of characters terminated with a NULL character ’\0’. Thus, a string cannot
contain a NULL character and by adding it and then reading can terminate the program
thinking it reached the end of a string and the read data will be incomplete. Removing
the zero byte could lead to program non-termination or crash reading the whole memory.
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Rule B.1: Remove random zero byte.
‘This is !binary! file.\0’
Rule B.2: Add zero byte to random position.
‘This is !\0binary! file.\0’

The inspiration for the last binary fuzzing rules is their deployment and success in existing
fuzzing tools. Although they do not have a specific focus on performance, they can often
trigger unexpected behaviour.

Rule B.3: Insert random byte.
‘This is !binar$y! file.\0’
Rule B.4: Remove random byte.
‘This is !binary! file.\0’
Rule B.5: Byte swap.
‘This is ebinary! fil!.\0’
Rule B.6: Bite flip.
‘This is %binary! file.\0’

4.4.3 Domain-Specific Strategies

If we have more domain-specific knowledge about the workload format we can devise spe-
cific rules. For the purpose of finding potential vulnerability more quickly, we want to avoid
workload discarding at the potential initial check. We propose rules for removing tags, at-
tributes, names or values of attributes used in XML based files (i.e. .xml, .svg, .xhtml,
.xul). For example, we can assume a situation, when fuzzer removes closing tag, which will
increase the nesting. Then a recursively implemented parser will fail to find one or more of
closing brackets (representing recursion stop condition) and may hit a stack overflow error.
Let us assume a sample line of XML file:

< book id=’bk106’ pages=’457’ >

Rule D.1: Remove an attribute.
< book id=’bk106’ pages=’457’ >

Rule D.2: Remove only attribute name.
< book id=’bk106’ pages=’457’ >

Rule D.3: Remove only attribute value.
< book id=’bk106’ pages=’457’ >

Rule D.4: Remove a tag.
< book id=’bk106’ pages=’457’ >
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We can adapt similar rules for e.g. HTML files or JSON-format. In this work we limit
ourselves to XML only. The concept of how the individual rules are selected, when the rule
is preferred and the other is neglected (or totally rejected) is described in Section 5.3.

Fuzzer also offers the possibility of adding custom rules. For adding the rules to a mu-
tation strategy set, one has to launch the fuzzer with a special file in YAML file format
containing the description of these rules. YAML is chosen because the Perun tool already
includes ancillary functions for basic work with YAML files. Each rule is represented as
an associative array in a form key: value, where both are regular expressions but key is
a pattern which should be replaced, and value is the replacement. An example of how such
a file might look like is shown in Listing 8.

Back: Front
del: add
remove: create
([0-9]{6}),([0-9]{2}): \\1.\\2
(\\w+)=(\\w+): \\2=\\1

Listing 8: A file containing five custom rules defined by regular expressions. Each rule
is then implemented in a separate function, where occurrences are substituted by standard
regular expression replacing.
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Chapter 5

Implementation

In previous chapter we proposed a fuzzer with focus on triggering performance bugs. This
work will be integrated in the Perun in Python 3.5. In this chapter, we will describe
the options of fuzz unit incorporating in the Perun, and reveal selected implementation
details of the Performance Fuzzing Algorithm from Listing 6 and 7, respectively, and some
other heuristics and features.

5.1 Fuzzer Implementation Structure
The proposed solution required to split the implementation part into several logical units.
We have broken the functionality of the fuzzer into the following nine modules:

• coverage.py: implements functions for coverage-guided testing,

• factory.py: main module of the project, contains the fuzzing loop, controls mutating,
rating the parents and so on,

• filesystem.py: contains functions dedicated for various operations over files and
directories in file system which are helpful for fuzzing process,

• filetype.py: module for automatic recognising the file type and choosing appropri-
ate fuzzing rules, and handling with user defined rules,

• interpret.py: contains a set of functions for interpretation the results of fuzzing,

• methods/binary.py: collects general fuzzing rules for binary files,

• methods/textfile.py: collects general fuzzing rules for text files,

• methods/xml.py: collects fuzzing rules specific for XML files.

If a user wants his custom rules to become a part of the default set of rules (for certain
type of file), it is necessary to implement them and modify the script filetype.py, which
is responsible for selecting the rules. To add, for example, specific rules for JSON file type,
one just has to create a new script, say json.py, and modify the rules selection. Note that
every rule should contain a brief description, which will be displayed after fuzzing.
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Integration within Perun. The task of proposed fuzzer, as part of the Perun tool, is
to find the potential harmful workloads during continuous performance testing. Integration
of fuzz unit within Perun is captured in Figure 5.1.
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Figure 5.1: Fuzzer incorporated into the Perun, adopted from [8]. Fuzzer unit takes
the seed workloads (e.g. problematic workloads for previous version of project) and starts its
loop. In order to evaluate new mutations, uses the results of analyses yielded from Perun
performance testing. If the fuzzer generates the workload which triggers a performance
degradation, and so Perun detects it, workload is stored, therefore developers can fix this
performance issue and keep the workload for future testing.

5.2 Acquiring Initial Seeds
We first have to get the set of user-provided initial sample workloads (i.e. workload corpus):
a crucial aspect of mutational fuzzing. Workloads can be passed to fuzzer comfortably as
an arbitrary mix of files or directories. Directories are then iteratively walked for all files
with reading permissions and optionally name matching user specified regular expression.
For example, consider an application that works with text files (in format of TXT, XML,
HTML) and user has one large directory with various collection of workloads. We can fuzz
with XML files just with simple regular expression ˆ.*.xml$. If we want to skip all the files
with the name containing string ”error“ we can use ˆ((?!error).)*$. Note that the fuzzer
should always be launched with just one type of initial files even if the target application
supports more types, since we tune the rules according to workload file format.

5.3 Mutation Methods Selection
The resulting fuzzer distinguishes between text and binary files and for each format defines
a set of concrete mutation strategies. It can be further extended by other strategies based
on file mime-type as well. We select corresponding strategies on the beginning, based on
the first loaded workload file. Basically, if this file is a binary, all the rules specific to
binaries are added to the set of rules, otherwise we add all the basic text rules. If the mime
type of a file is supported by the fuzzer, we add to the set of rules mime-specific rules as
well as any user-defined rules. Note that the group of currently supported specific methods
for certain types can be further expanded by other file types.

We argue the advantage of fuzzing with one file type rests in its code covering feature.
To be more precise, we are not observing at the overall percentage of code coverage, but how
many lines of code has been executed in total during the run, with an aim to maximise it.
Consider an application that extracts meta-data from different media files, such as WAV,
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JPEG, PNG, etc. If a PNG image file is used as a seed to this application, only the parts
related to PNG files will be tested. Then testing with WAV will cause, that completely
different parts of the program will be executed [6], hence total executed code lines of these
two runs cannot compare with each other because reaching higher line coverage with WAV
files would lead to preferring them for fuzzing, and PNG files would be neglected (see
Section 5.6.1 for more information about file preference). Moreover, we are aware that this
strategy may miss some performance bugs. Fuzzing multiple mime-types is current feature
work.

5.4 Initial Program Testing
Baseline results (i.e. results and measurements of workload corpus) are essential for detec-
ting performance changes because newly mutated results have to be compared against some
expected behaviour, performance or value. Hence, initial seeds become test cases and they
are used to collect performance baselines. By default, our initial program testing as well
as testing within the fuzzing loop (Section 5.6) interleaves two phases described in more
details below: coverage and performance-guided testing.

5.4.1 Coverage-Guided Testing
If one wants to achieve good results in triggering performance changes it is generally re-
commended to monitor the code coverage during the testing especially tracking coverage
of unique paths. The intuition is that by monitoring how many paths are covered and how
often they are executed, we can more likely encounter a new performance bug.

In our fuzzer, we use Gcov tool to measure the coverage. The program has to be build
for coverage analysis with GNU Compiler Collection (GCC) with the option --coverage
(or alternatively a pair of options -fprofile-arcs -ftest-coverage). The resulting file
with the extension .gcno contains the information about basic block graphs and assigns
source line numbers to blocks. If we execute the target application a separate .gcda files
are created for each object file in the project. These files contain arc transition counts,
value profile counts, and additional summary information [1].

Gcov uses these files for actual profiling which results into the output .gcov file. Version
4.9 supports easy-to-parse intermediate text format using the option -i when launching
the tool. However, older versions does not support this option, hence before the run, we
have to dynamically check the version and accordingly parse the output files. The difference
between intermediate and standard format of output file is shown in Listings 9 and 10.

Total count of executed code lines through all source files represents the coverage (and
partly also a performance) indicator for the first testing phase. An increase of the value
means that more instructions have been executed (for example, some loop has been repeated
more times) so we hope that performance degradation was likely triggered as well. Note
that the limitation of this approach is that it does not track uniquely covered paths, which
could trigger performance change as well. Support of more precise coverage metrics is
a future work.

So first the target program is executed with all files from workload corpus. After each
single execution, .gcda files are filled with coverage information, which Gcov tool parses
and generates output files. We parse coverage data from the output .gcov file, sum up line
executions, compare with the current maximum, update the maximum if new coverage is
greater and iterate again. It follows that base coverage is the maximum count of executed
lines reached during testing with seeds.
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1 file:motivation-example.c
2 function:6,10,doSomething
3 function:8,1,main
4 lcount:6,10
5 lcount:8,1
6 lcount:10,1
7 lcount:12,3
8 lcount:13,2
9 lcount:15,1

10 lcount:16,11
11 lcount:17,10

Listing 9: The resulting gcov file in intermediate text format with information about run
of motivation example from Listing 5. We parse the lines starting with lcount, where
the first value means the number of the line and the second how many times was the line
executed. The program was launched with an input string ’10’, which led to 39 executed
lines in total.

1 -: 0:Source:motivation-example.c
2 -: 0:Graph:motivation-example.gcno
3 -: 0:Data:motivation-example.gcda
4 -: 0:Runs:1
5 -: 0:Programs:1
6 -: 1:#include <stdio.h>
7 -: 2:#include <stdlib.h>
8 -: 3:
9 -: 4:#define DIGITS 2

10 -: 5:
11 10: 6:void doSomething(){ return; }
12 -: 7:
13 1: 8:int main(int argc, char ** argv){
14 -: 9:
15 1: 10: FILE * fp = fopen("workload.txt","r");
16 -: 11: char array [DIGITS];
17 3: 12: for(int i=0; i<DIGITS; i++)
18 2: 13: array[i] = fgetc(fp);
19 -: 14:
20 1: 15: unsigned number = atoi(array);
21 11: 16: for(unsigned i=0; i<number; i++)
22 10: 17: doSomething();
23 -: 18:}

Listing 10: The resulting gcov file in standard format with information about run of
the same program with the same input as in the previous case. One can see, that parser
will have to process twice as many lines in comparison with the intermediate format, be-
cause of additional information and code, which are currently unnecessary for our analysis.
Therefore the parser has to go through 23 lines but only 8 of them contained wanted infor-
mation.
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5.4.2 Profile-Guided Testing

While coverage-based testing within fuzzing can give us fast feedback, it does not serve as
an accurate performance indicator. We hence want to exploit results from Perun. Perun
runs the target application with a given workload, collects performance data about the run
(such as runtime or consumed memory) and stores them as a persistent profile (i.e. the set
of performance records). Analogically to the previous section, we will need a performance
baseline, which will be compared with newly generated mutations. Profiles measured on
fuzzed workloads (so called target profiles) are then compared with a profile describing
the performance of the program on the initial corpus (so calledbaseline profiles). In order to
compare the pair of baseline and target profiles, we use sets of calculated regression models,
which represents the performance using mathematical functions computed by the least-
squares method. We then use the Perun internal degradation methods [18] which work
as follows. From both of these sets we select for each function models with the highest
value of coefficient of determination 𝑅2. This coefficient represents how well the model fits
the data, and also its corresponding linear models. For both pairs of best models and linear
models, we compute a set of data points by simple subtraction of these models. Then we
use regression analysis to obtain a set of models for these subtracted data points. Moreover,
for the first set of data points, corresponding to the best-fit models, we compute the relative
error, which serves as a pretty accurate check of performance change. All of these regressed
models are then given to the concrete classifiers, which returns detected degradations for
each function.

5.5 Parents Rating
Initially, the workload corpus is filled with seeds (given by user), which will be parents
to newly generated mutations (we can also call these seeds parent workloads). While we
fuzz, we extend the corpus with successful mutations which become parent workloads too.
The success of every workload is represented by the fitness score: a numeric value indicating
workload’s point rating. The better rating of workload leads either to better code coverage
(and possibly new explored paths or iterations) or to newly found performance changes.
We calculate the total score by the following evaluation function:

𝑠𝑐𝑜𝑟𝑒𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 = 𝑖𝑐𝑜𝑣𝑟workload * (1 + 𝑝𝑐𝑟workload).

Increase coverage rate (icovr): This value indicates how much coverage changed if we
run the program with the workload, compared to the base coverage measured for initial
corpus. Basically, it is a ratio between coverage measured with the mutated workload and
the base coverage:

𝑖𝑐𝑜𝑣𝑟workload = 𝑐𝑜𝑣workload/𝑐𝑜𝑣base.

Performance change rate (pcr): In general, we compare the newly created profile
with the baseline profile (for details see Section 5.4.2) and the result is a list of located
performance changes (namely degradations, optimisations and no changes). Performance
change rate is then computed as ratio number of degradations in the result list:

𝑝𝑐𝑟workload = cnt(𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛, 𝑟𝑒𝑠𝑢𝑙𝑡)/len(𝑟𝑒𝑠𝑢𝑙𝑡)

This value plays a large role in the overall ranking of workload, because it is based on the real
data collected from the run. And so workloads that report performance degradations and

35



not just increases coverage have better ranking. The computation of 𝑝𝑐𝑟workload could
further be extended by the rate of degradations, i.e. if two workloads found the same
number of degradations, the workload which contains more serious change would be ranked
better. Optimisations of ranking algorithm is another future work. This evaluation serves
for informed candidate selection for fuzzing from the parents, described in the Section 5.6.1.

5.6 Fuzzing Loop
This main loop runs for a limited time specified the user. One, however must take take
into account that testing and especially performance analysis has some overhead and so it
may sometimes take longer. On the other hand, the program can catch SIGINT signal to
terminate the fuzz test when a user decides to quit earlier. Fuzz unit is ready to receive
this signal, however, other Perun units (collectors, postprocessors) have not implemented
handlers for interruption signal, hence it is not recommended to interrupt during perfor-
mance testing, but only in the coverage-guided testing phase. In this section, we described
the main loop of the whole fuzzing process and some of its most significant parts.

5.6.1 Parent Workload Selection

The first task at the beginning of every iteration is to select the workloads from parents
which will be further mutated. All parents are kept sorted by their scores, and the selection
for mutation consists of dividing the seeds into five intervals such that the seeds with
similar value are grouped together. Five intervals seem to be appropriate because with
fewer intervals parents are in too big groups and in case of more intervals, parents with
similar score are pointlessly scattered. First, we assign a weight to each interval using
linear distribution. Then we perform a weighted random choice of interval. Finally, we
randomly choose a parent from this interval, whereas differences between parent’s scores in
the same interval are not very notable. The process of selecting is illustrated in Figure 5.2.
The intuition behind this strategy is to select the workload for mutation from the best
rated parents. From our experience, selecting only the best rated parent in every iteration
does not led to better results, and other parents are ignored. Hence we do selection from
all the parents, but the parent with better score has a greater chance to be selected.

w	=	1 w	=	2 w	=	3 w	=	4 w	=	5

weighted interval selection

0 fitness 
scoreparent input

randomly chosen parent from selected interval

Figure 5.2: Parents are divided to intervals according to their fitness score. Weighted
choice of interval determines the chunk of seeds, from which final candidate is randomly
chosen.
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5.6.2 Data Mutating

Once we have baseline data for workload corpus and choose appropriate mutation rules
for concrete file type, we use fuzzer to gradually apply the mutations and generate new
workloads. However, it is necessary to determine how many new files (𝑁) to generate by
rule 𝑓 in the current iteration of fuzzing loop. If 𝑁 is too big and we generate mutations for
each rule 𝑓 from the set of rules, the corpus will bloat. On the other hand, if 𝑁 is too low,
we might not trigger any change. Instead we propose to dynamically calculate the value of
𝑁 according to the statistics of fuzzing rules during the process. Statistical value of rule 𝑓
is a function:

𝑠𝑡𝑎𝑡𝑠𝑓 = (𝑑𝑒𝑔𝑠𝑓 + 𝑖𝑐𝑜𝑣𝑟𝑓 )

where 𝑑𝑒𝑔𝑠𝑓 represents the number of detected degradations by applying the rule 𝑓 , and
𝑖𝑐𝑜𝑣𝑟𝑓 stands for how many times the coverage was increased by applying rule 𝑓 . Fuzzer
then calculates the number of new mutations for every rule to be applied in four possible
ways:

1. The case when 𝑁 = 1, the fuzzer will generate one mutation per each rule. This is
a simple heuristic without the usage of statistical data and where all the rules are
equivalent.

2. The case when 𝑁 = 𝑚𝑖𝑛(𝑠𝑡𝑎𝑡𝑠𝑓 + 1, 𝐹𝐿𝑃𝑅), the fuzzer will generate mutations pro-
portionally to the statistical value of function (i.e. 𝑠𝑡𝑎𝑡𝑠𝑓 ). More mutation workloads
are generated for more successful rules. In case the rule 𝑓 has not caused any change
in coverage or performance (i.e. 𝑠𝑡𝑎𝑡𝑓 = 0) yet, the function will ensure the same re-
sult as in the first strategy. File Limit Per Rule (FLPR) serves to limit the maximum
number of created mutations per rule and is set to value 100.

3. Heuristic that depends on the total number of degradation or coverage increases
(𝑡𝑜𝑡𝑎𝑙). The ratio between 𝑠𝑡𝑎𝑡𝑠𝑓 and 𝑡𝑜𝑡𝑎𝑙 determines the probability 𝑝𝑟𝑜𝑏𝑓 , i.e.
the probability whether the rule 𝑓 should be applied, as follows:

𝑝𝑟𝑜𝑏𝑓 =

⎧⎪⎨⎪⎩
1 if 𝑡𝑜𝑡𝑎𝑙 = 0

0.1 if 𝑠𝑡𝑎𝑡𝑠𝑓/𝑡𝑜𝑡𝑎𝑙 < 0.1

𝑠𝑡𝑎𝑡𝑠𝑓/𝑡𝑜𝑡𝑎𝑙 otherwise

and we choose 𝑁 as:

𝑁 =

{︃
1 if 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑝𝑟𝑜𝑏𝑓

0 otherwise

Until some change in coverage or performance occurs, (i.e. while 𝑡𝑜𝑡𝑎𝑙 = 0), one new
workload is generated by each rule. After some iterations, more successful rules have
higher probability, and so they are applied more often. On contrary rules with a poor
ratio will be highly ignored. However, since they still may trigger some changes we
round them to the probability of 10%.

4. The last heuristic is a modified third strategy combined with the second one. When
the probability is high enough that the rule should be applied, the amount of gener-
ated workloads is appropriate to the statistical value. Probability 𝑝𝑟𝑜𝑏𝑓 is calculated
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equally, but the equation for choosing 𝑁 is modified to:

𝑁 =

{︃
𝑚𝑖𝑛(𝑠𝑡𝑎𝑡𝑠𝑓 + 1, 𝐹𝐿𝑃𝑅) if 𝑟𝑎𝑛𝑑𝑜𝑚 <= 𝑝𝑟𝑜𝑏𝑓

0 otherwise

Our fuzzer uses this method by default because in our experience it guarantees that
it will generate enough new workloads and will filter out unsuccessful rules without
totally discarding them. In case that target program is prone to workload change and
the user wants better interleaving of testing phases, it is recommended to use the third
method because the maximum number of all created mutations in one iteration is
limited by the number of selected mutation rules.

5.6.3 Gathering Interesting Mutations

We usually run fuzzing for a longer period of time trying to trigger as many changes or
faults as possible. To maximise the number of found changes we try to avoid running
the target application with workloads with a poor chance to succeed.

In the situation, when the workload does not exceed the coverage threshold, it is not
significant, because the estimated instruction path length is not satisfactory, hence we
discard this workload. The threshold for discarding mutations is multiple of base coverage,
set to 1.5 by default, but it can also be specified by the user. A mutation is classified as
an interesting workload in case two criteria are met:

𝑐𝑜𝑣𝑚𝑢𝑡 > 𝑐𝑜𝑣𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 & 𝑐𝑜𝑣𝑚𝑢𝑡 > 𝑐𝑜𝑣𝑝𝑎𝑟𝑒𝑛𝑡

i.e. it has to exceed the given threshold and achieve a higher number of executed lines than
its predecessor.

In addition, we feel that the user may not know the ideal threshold and the default value
may be too high or too low. Therefore, the constant which multiplies the base coverage
(and thus determines the threshold) changes dynamically during fuzzing. In case it is
problematic to reach the specified coverage threshold, the value of the constant decreases
and thus gives more chance for further mutations to succeed. Vice versa, if the mutations
have no problem to exceed the threshold, the value of the constant is probably too low, and
hence we increase it.

During the testing, fuzzed workload can cause that target program terminates with
an error (e.g. SIGSEGV, SIGBUS, SIGILL, . . . ) or it hangs (runs too long). Even though
we are not primarily focused on faults, they can be interesting for us as well because
an incorrect internal program state can contain some degradation and in case of error,
handlers can also contain degradation.

The Final Phase of Iteration

After the mutation, all the interested workloads are collected and ready for real testing to
detect performance changes. Testing is done similarly to the initial profile-guided testing
(Section 5.4.2), but instead we test with fuzzed interesting workloads. If the Perun detect
some performance degradation, the particular mutation’s rate is recalculated, fuzzer update
its statistics of mutation rules, and one iteration is at the end.
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Figure 5.3: Lifetime of workloads, for better understanding. User workloads become
parents, we are applying a set of rules on them in order to create their mutations, and
the ones with good coverage join the parent set. These workloads may also join the final
results set, if they incur a performance degradation.

5.7 Interpretation of Fuzzing Results
During the fuzzing, every file executed with the target program, where the collected runtime
data showed a performance drop, joins the set of final results. A tester can then analyse
these workloads manually. In addition, fuzzer also produces files by which program termi-
nated with an error, or ran too long and these files are stored in specific folders. Other
mutations that have been created while running fuzz testing are removed. An example of
the structure and content of an output directory is shown in Listing 12.

In order to interpret the results of fuzzing we propose two visualisation techniques:
time series and workload difference. The time series graphs show the number of found
mutations causing degradation and the maximum recorded number of lines executed per one
run. From these graphs, one can e.g. read the time needed to achieve sufficient results and
estimate orientation time for future testing. In both graphs are denoted three statistically
significant values: first quartile, second quartile (median) and third quartile from the y-axis
values. The intention is to illustrate at what point in time we have achieved the individual
portion of the result.

For plotting time series graphs we used matplotlib1 library and difflib2 module helps to
calculate deltas between files. Examples of results interpretation are shown in Figures 5.4
and 5.5.

1matplotlib — https://matplotlib.org/
2difflib — https://docs.python.org/3/library/difflib.html
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Figure 5.4: Example time series graph, that demonstrates the growth of the detected
degradations during the fuzz testing. We can see when the first degradation was detected,
when a quarter of the total number of degradations was reached (first quartile, time: 22 s),
when approximately half of the total degradations (second quartile, time: 35 s) and three
quarters of the total degradations (third quartile, time: 50 s). In the end, the curve stabilised
slightly because we found such mutations with which the run of the program took longer.
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Figure 5.5: Example time series graph, that shows the growth of a maximum number of
executed LOC during fuzzing. In first seconds of fuzzing we found a mutation that force
target program to execute 16 times more LOC in comparison with the initial seed, and
the ratio gradually increases to 29. Three quartiles denote time when 25%, 50% and 75%
of the ratios are less than quartile value. User can find raw data of graphs with the exact
values in logs directory.
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Besides visualisation, we create diff file for every output file. It shows the differences
between files and the original seed, from which the file was created by mutation. The file
is in HTML format, and the differences are color-coded for better orientation. Example of
diff file is shown in Listing 11.

1 ---
2 +++
3 @@ -1 +1 @@
4 -spse1po@gmail.com
5 +spsepogma.cospsepogma.com

Listing 11: Diff file (in uniffied format) shows the differences between the mutated work-
load and a seed file. Green lines are fuzzed lines that replaced the original content, which
is in red color.

1 output/
2 |--- diffs
3 |--- medium_words-02000b239d024dbe933684b6c740512e-diff.html
4 |--- medium_words-389d4162ad6641d187dc405000b8d50a-diff.html
5 |--- medium_words-39b5d7aa55fd404aa4d31422c6513e2c-diff.html
6 |--- faults
7 |--- medium_words-389d4162ad6641d187dc405000b8d50a.txt
8 |--- graphs
9 |--- coverage_ts.pdf

10 |--- degradations_ts.pdf
11 |--- hangs
12 |--- medium_words-39b5d7aa55fd404aa4d31422c6513e2c.txt
13 |--- logs
14 |--- coverage_plot_data.txt
15 |--- degradation_plot_data.txt
16 |--- results_data.txt
17 |--- medium_words-02000b239d024dbe933684b6c740512e.txt

Listing 12: An example structure of output directory, which is hierarchically divided into
five subdirectories: diffs contains diff files of the workloads, faults includes workloads
that led to a fault or crash of the target application, graphs contains time series graphs
in PDF format, hangs contains workloads which forced the program to reach the timeout,
and logs where are stored raw data used for plotting the graphs and results of fuzzing in
plain-text format. On the same level are the workloads denoted as final results, i.e. causing
performance degradation.
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5.8 Fuzzer Interface
Fuzz unit offers a command line interface (CLI) for interaction with user. To start the fuzzing,
one uses command perun fuzz with the specification of the tested command, along with
arguments, initial workloads, selected collector and possibly postprocessors (with their ad-
ditional parameters), similar to Listing 3. Moreover, the user can customise the fuzzing
process by using additional options, e.g. with a goal to:

• determine the time limit for fuzz testing,

• set the maximum size of generated mutation,

• define the paths to source and .gcno files (inevitable for coverage testing),

• set the values of the limitations for coverage-guided testing (line 11 in Listing 6),

• determine the initial value of coverage increase ratio,

• define the maximum time for execution with one workload (timeout for hangs),

• determine the strategy for choosing the number of generated mutations for the rules,

• filter the initial set of workloads by regular expression,

• define custom rules by attaching the YAML file with their specifications.

The user also has to specify the path to the directory where the results of fuzzing will be
stored in a hierarchic structure as illustrated in Listing 12. Running perun fuzz --help
will list all available options that user can specify in order to customise the fuzzing. After
fuzzing, summary information about the testing will appear on the standard output as
demonstrates Appendix A.

5.9 Testing the Fuzz Unit
Properly tested code with sufficient coverage is also one of the conditions for incorporating
into the Perun tool. The test coverage of fuzz unit is listed in Listing 13.

1 Name Cover
2 ----------------------------------------------------------------------
3 perun/fuzz/__init__.py 100%
4 perun/fuzz/coverage.py 93%
5 perun/fuzz/factory.py 90%
6 perun/fuzz/filesystem.py 100%
7 perun/fuzz/filetype.py 100%
8 perun/fuzz/interpret.py 100%
9 perun/fuzz/methods/binary.py 100%

10 perun/fuzz/methods/textfile.py 100%
11 perun/fuzz/methods/xml.py 100%
12 perun/fuzz/perun_based.py 96%

Listing 13: Results of unit testing with coverage of individual modules.
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Chapter 6

Experimental Evaluation
We tested our performance fuzzer on several case studies to measure its efficiency of gen-
erating exhausting mutations. This chapter explores several performance issues in data
structures such as hash table or unbalanced binary tree, and a group of regular expressions
that have been confirmed as harmful. All the tests ran on a reference machine Lenovo G580
using 4 cores processor Intel Core i3-3110M with maximum frequency 2.40GHz, 4GiB mem-
ory, and Ubuntu 18.04.2 LTS operating system.

6.1 Sorting Vulnerabilities
Unbalanced Binary Tree (UBT). Time consumption of inserting to an unbalanced
binary tree highly depends on the order of insertion. Even though it is expected to consume
𝑂(𝑛.𝑙𝑜𝑔(𝑛)) time when inserting 𝑛 elements, if the elements are sorted beforehand, the tree
will degenerate to a linked list, and so it will take 𝑂(𝑛2) time to insert all 𝑛 elements.

First, we constructed files with randomly generated 1 000 integers in the range of <0,
1 000> and 10 000 integers in the range of <0, 10 000>, and we used them as initial seeds
(𝑠𝑒𝑒𝑑1, 𝑠𝑒𝑒𝑑2) to a program that creates an UBT, iteratively inserts elements, and at the end
prints the created UBT. We expected that the program performance will highly depend on
the amount of workload data, so with the aim to avoid large files we limited the maximum
size of mutations.
Table 6.1: The worst-case mutations as workloads for program that manipulates with
an UBT. Although our first testing found some workloads reporting degradation, the change
was not that impressive. Within the second testing, even a workload about half the size
of the initial seed could force the program to create over 125 times deeper binary tree.
The worst-case mutation that is as big as original seed, but with sorted elements, pro-
long the program run more than 100 times (two orders of magnitude degradation). Note
that though the worst-case height of UBT when inserting 10 000 elements should be 9 999,
the numbers of the initial seed were randomly chosen allowing repeat.

size [B] runtime [s] executed LOC ratio tree height
𝑠𝑒𝑒𝑑1 3 879 0.011 1.00 21
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒11 1 939 0.033 5.94 309
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒12 3 879 0.110 24.46 625
𝑠𝑒𝑒𝑑2 48 913 0.109 1.00 26
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒21 24 456 2.927 49.34 3 253
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒22 48 912 11.014 187.36 6 346
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Analysis of worst-case mutations confirmed that unbalanced binary tree degenerates to
a linked list when a sorted list is inserted. Table 6.1 presents the results of the program run
with the worst-case workloads from each testing. The rules applied on the most exhausting
workloads are listed in Table 6.2.

Table 6.2: Table shows the sequence of mutation rules that transformed the seeds into
worst-case workloads. Each rule is identified by a label, as defined in Section 4.4. One can
see that rules for sorting were more frequently used and thus more successful in mutation.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒11 [T.7, T.6, T.3, T.6, T.2, T.6]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒12 [T.7, T.6, T.1, T.7, T.4]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒21 [T.6]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒22 [T.7]

std::list + std:find. In our second experiment, we tested the standard library list
(std::list1) which is usually implemented as a doubly-linked list, and we performed
a search with std::find2 function. The tested program reads strings from a file, saves
them to list and subsequently performs a search for each of them. First initial seed con-
tained 5 000 random english words (𝑠𝑒𝑒𝑑1), and in the second set of tests the initial seed
contained 10 000 random english words (𝑠𝑒𝑒𝑑2). For each seed the program run for 266 mil-
liseconds, and 524 milliseconds respectively in average to fill the list and then find every
word. In first experiments, we set the maximum size of generated workload to the value of
initial seed and in the second one to double of the value. After testing we collect the worst-
case workloads and their impact on program is shown in Table 6.3. The rules that led to
transformation of the seeds into the worst-case workloads are listed in Table 6.4.

Table 6.3: The most greedy generated workloads compared to initial workload. Processing
the worst-case workload, which was the same size as the seed, took program slightly more
time to process, roughly in similar proportion as executed LOC ratio. By inspection of
these workloads we noticed, that the parts of them are sorted. As one can see, the greater
performance change was discovered when the seed containing around 10 000 words, which
was expected. Note that worst-case file is two times bigger, contains two times more words,
but incur one order of magnitude degradation. In comparison, the execution with a file
contained the same words as 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒22, but randomly shuffled, took only 2.102 seconds
in average.

size [B] runtime [s] executed LOC ratio words
𝑠𝑒𝑒𝑑1 37 459 0.266 1.00 5 000
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒11 37 458 0.485 1.88 5 003
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒12 74 918 1.860 7.53 10 011
𝑠𝑒𝑒𝑑2 74 915 0.524 1.00 10 000
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒21 74 897 1.876 3.78 10 041
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒22 149 830 7.278 15.05 20 024

1std::list — https://en.cppreference.com/w/cpp/container/list
2std::find — https://en.cppreference.com/w/cpp/algorithm/find
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Table 6.4: Table lists history of applied rules for worst-case mutations. Notice, that rules
providing sort of the elements (T.6 and T.7) appear in the history of every mutation.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒11 [T.3, T.7, T.6, T.2, T.6, T.6]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒12 [T.2, T.7, T.1, T.8, T.1, T.6, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒21 [T.7, T.3, T.3, T.3, T.3, T.3, T.3, T.3, T.3]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒22 [T.7, T.1, T.6]

6.2 Regular Expression Denial of Service (ReDoS).
In this case study, we tested artificial programs which use std::regex_search3 with regular
expressions inspired by existing ReDoS attacks. ReDoS is an attack based on algorithmic
complexity where regular expression are forced to take long time to evaluate, mostly because
of backtracking algorithm, and leads to the denial of service.

StackOverflow trim regex. The first experiment is the regular expression that caused
an outage of StackOverflow in July, 2016 [2]. An artificial program reads every line and
search for match with the regular expression. We used simple source code in C perform-
ing parallel grep as an initial seed, written in 150 lines. With only two tests, we could
force the vulnerability, as we show in Table 6.5. Which rule is responsible for revealing
the weakness can be found in Table 6.6.

Table 6.5: The results from two testings with size limitation set to 5 000 and 10 000 bytes.
Analysis of worst-case mutations showed that long sequences of whitespaces not ending with
the end of line caused the regex engine to backtrack repeatedly. As one can see, the 𝑤𝑜𝑟𝑠𝑡-
𝑐𝑎𝑠𝑒1 mutation achieved over 16 times longer runtime (one order of magnitude) with only
5 lines of code where whitespaces take 97% of a space. Since we used dynamically collected
statistics, fuzzing gave the advantage to whitespace mutation rules, because of their success
and therefore they were applied more often. It is more visible in the 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2, where
fuzzer could simply enlarge the file by increasing the number of lines, but instead focused
on white characters.

size [B] runtime [s] executed LOC ratio lines whitespaces
𝑠𝑒𝑒𝑑 3 535 0.096 1.00 150 306
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 5 000 1.566 24.32 5 4881
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 10 000 2.611 41.38 17 9603

3std::regex_search — https://en.cppreference.com/w/cpp/regex/regex_search
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Table 6.6: Multiple uses of rule that inserts whitespaces to random position result into
big gaps not ending with end of line: the weakness of tested regular expression.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.10, T.10, T.10, T.10]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.10, T.10, T.10, T.10, T.10]

Email validation regex. This regular expression is part of the Regular Expression Lib-
rary4 and is marked as malicious and triggering ReDoS. We constructed a program that
takes an email address from a file and tries to find a match with this regular expression. As
an initial seed we used a file containing valid email address ’spse1po@gmail.com’. We ran
two tests, in the first case with an email that must contain the same count of characters
as the seed, and in the second case it can contain twice the size. We present the results in
Table 6.7 and rules that were used on these mutations are listed in Table 6.8.

Table 6.7: Worst-case mutations for email validation regex. The longer lines not containing
’@’ sign cause catastrophic backtracking and were terminated (i.e. the run with them take
too much time). Even that the size limit for the second test was set to double of the seed
(i.e. 36 bytes), the best result was 25 bytes long malformed workload. The reason is that
bigger workloads were: (1) not that properly constructed, or (2) too greedy so program
reached the set timeout. Because of that, the fuzzer also reported another 8 mutations
classified as hangs, and with one of them (𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔) the program terminated after
more than 5 hours of running.

size [B] runtime [s] executed LOC ratio
𝑠𝑒𝑒𝑑 18 0.016 1.00
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 18 0.176 70.83
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 25 10.098 4 470.72
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔 36 >5 hours ∞

Table 6.8: Two rules, namely removing random character and extending a size of line,
were mostly encouraged in the generation of the presented workloads.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.15, T.8, T.15, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.15, T.15, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔 [T.15, T.15, T.1]

In the following we list the most greedy workloads from each testing and their content:

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1: spse1pogailcspse1p

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2: spse1poailcospse1poailco

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2ℎ𝑎𝑛𝑔: spse1poailcospse1poailcospse1poailco

4http://regexlib.com/REDetails.aspx?regexp_id=1757
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Java Classname validation regex. This vulnerable regular expression for validation of
Java class names appeared in OWASP Validation Regex Repository5. The testing program
was similar to the previous one: reads a class name from a file and tries to find a match
with this regular expression. Initial file had one line with string ’myAwesomeClassName’.
To avoid the large lines, first we set a size limit for mutations to the size of the initial seed
(19 bytes), then to double and finally to quadruple of the size. We present the results of
these three tests in Table 6.9. In addition, Table 6.10 shows the order of rules used to
mutate the initial seeds.
Table 6.9: We detected two orders of magnitude degradation within run of program
with the worst-case from the last test case (𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3). The fuzzer generates and stores
another 26 files that was classified as hangs. By additional testing we found the 𝑤𝑜𝑟𝑠𝑡-
𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 workload which had enormous impact on program performance, and program did
not terminate even after 13 hours lasting run.

size [B] runtime [s] executed LOC ratio
𝑠𝑒𝑒𝑑 19 0.005 1.00
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 19 0.016 14.31
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 36 1.587 2 383.99
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3 78 3.344 5 056.67
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 78 ∞ ∞

Table 6.10: Table lists the rules in order they was applied on the initial seeds and cre-
ated malicious workloads. Removing characters together with data duplicating, appending
whitespaces and other rules collaborated on generation of the worst-case mutations for this
case study.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.8, T.15, T.8, T.15, T.15, T.1, T.12, T.8, T.1]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.8, T.15, T.15, T.2, T.8, T.15]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3 [T.8, T.15, T.1, T.4, T.2]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔 [T.8, T.15, T.1, T.15, T.2]

We again list the content of generated mutations:
• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1: mywesomelassamemywm

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2: mywesomelassamemywesomelassam␣␣␣␣␣␣␣

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3: ssammyAwesomelassammyAweiomelassaVmyAwes×melassammmyAwesome
lassammyAweomel

• 𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒3ℎ𝑎𝑛𝑔: laalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaalaala
alaalaalaalaalaalaal

We also tested other regular expressions, which can be forced to an unlucky backtrack-
ing, e.g., expressions to validate a HTML file, search for a specific expression in CSV files
or validation of a person name from OWASP Validation Regex Repository. Some of them
are part of the evaluation in an article presented at Excel@FIT’19 conference [11].

5https://www.owasp.org/index.php/OWASP_Validation_Regex_Repository
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6.3 Hash Collisions
Finally, we tried our fuzzer on a simple word frequency counting program, which uses
hash table with a fixed number of buckets (12 289 exactly) and the maximum length of
the word limited to 127. The distribution of the words in the table is ensured by the hash
function. It computes a hash, which is then used as an index to the table. Java 1.1 string
library used a hash function that only examined 8-9 evenly spaced characters, which can
result into collisions for long strings [19]. We have implemented this behaviour into an
artificial program. The likely intention of the developers was to save the function from
going through the whole string if it is longer. Therefore, for fuzzing, we initially generated
a seed with 10 000 words of 20 characters and started fuzzing. To compare the results we
chose the DJB hash function6, as one of the most efficient hash functions. Tables 6.11
and 6.12 show the result of this last experiment.

Table 6.11: After only 10 minutes of fuzzing each test case was able to find interesting
mutations. We then compared the run by replacing the hash function in early Java version
with DJB hash function, which computes hash from every character of a string. Table
shows, that worst-case workloads have much more impact on performance of the hash table
and less stable times using Java hash function, compared to DJB. With such a simple fuzz
testing developers could avoid similar implementation bugs.

Java 1.1 hash function DJB hash function
size [kB] runtime [ms] LOC ratio runtime [ms] LOC ratio

𝑠𝑒𝑒𝑑 210 26 1.0 13 1.0
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 458 115 3.48 27 2.19
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 979 187 7.88 43 4.12

Table 6.12: Table shows the sequence of mutation rules that transformed the seed into
worst-case workloads. In this experiment the rules that duplicates data (T.2), increases
number of lines (T.3), changes and removes random characters (T.4 and T.15) were the most
frequent.

used mutation rules
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒1 [T.2, T.3, T.15, T.15, T.11, T.15]
𝑤𝑜𝑟𝑠𝑡-𝑐𝑎𝑠𝑒2 [T.2, T.3, T.4, T.15, T.9, T.4, T.2, T.3, T.15, T.15]

We also tried our solution on projects that worked with binary and XML files. Since they
did not incur any changes in performance, they are not part of the experimental evaluation.
Therefore, improving the existing binary and domain-specific rules together with designing
new ones is one of our future goals.

6http://www.partow.net/programming/hashfunctions/#DJBHashFunction
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Chapter 7

Conclusion

In this thesis, we introduced a fuzzing machine generating malicious inputs focusing on
performance weaknesses. We use specific methods to mutate the files, dynamically analyse
their efficiency, collect coverage information and use the Perun tool to measure informa-
tion of program run. Moreover, after fuzzing we provide information about testing in raw
and graphical form, and store the worst-case inputs along with their deltas against the orig-
inal file. Our solution revealed weaknesses in artificial projects working with various data
structures and harmful regular expressions, and their performance extremely degraded with
processing mutated inputs.

In desing of mutation rules we still mainly focus on text files, hence our future work
will focus mainly on proposing more performance tuned rules for, e.g., binary files or other
domain-specific types of files. Moreover, we want to add support for fuzzing with multiple
file types, and also improve parent rating and selection by deeper analysis of program run.
At last, we plan to evaluate our solution on real-world projects and potentially report new
unique performance bugs.
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Appendix A

Example Output of the Fuzzing

1 Fuzzing successfully finished.
2 Plotting graphs ...
3 Computing deltas ...
4 Saving log files ...
5 Removing remaining mutations ...
6 ================================ RESULTS ================================
7 Fuzzing time: 611.35s
8 Coverage testing: True
9 Program executions for coverage testing: 870

10 Program executions for performance testing: 300
11 Total program tests: 1170
12 Maximum coverage ratio: 3.4898473442156073
13 Founded degradation mutations: 299
14 Hangs: 0
15 Faults: 0
16 Worst-case mutation: /home/matus/long_words-e99eed7fe20ef2e4e717676a2.txt
17 ============================= MUTATION RULES ============================
18 id Caused deg | cov incr Desription
19 0 92 times Change random characters at random places
20 1 66 times Insert whitespaces at random places
21 2 114 times Divide random line
22 3 6 times Double the size of random line
23 4 72 times Append WS at the end of the line
24 5 0 times Remove WS of random line
25 6 76 times Multiplicate WS of random line
26 7 64 times Prepend WS to random line
27 8 12 times Duplicate random line
28 9 8 times Sort words of random line
29 10 7 times Reversely sort words of random line
30 11 0 times Multiplicate word of random line
31 12 0 times Remove random line
32 13 0 times Remove random word of line
33 14 82 times Remove random character of line
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Appendix B

Storage Medium

/perun/*— source code of Perun containing fuzz unit

/README.txt— useful information about the storage medium content

/text/*— source code of this thesis

/xlisci02.pdf— final version of this thesis

/experiments/*— source code of experimental projects
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