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Abstract
In this work, we propose optimization techniques focused on the data collection process
of program performance analysis and profiling within the Perun framework. We enhance
Perun (and especially its Tracer module) by extending their architecture and implementing
novel optimization techniques that allow Perun to scale well even for large projects and
test scenarios. In particular, we focus on improving the data collection precision, scaling
down the amount of injected instrumentation, limiting the time overhead of the collection
and profiling processes, reducing the volume of raw performance data and the size of the
resulting profile. To achieve such optimization, we utilized statistical methods, several
static and dynamic analysis approaches (as well as their combination) and exploited the
advanced features and capabilities of SystemTap and eBPF frameworks. Based on the
evaluation performed on two selected projects and numerous experiment cases, we were
able to conclude that we successfully achieved significant levels of optimization for nearly
all of the identified metrics and criteria.

Abstrakt
Tato práce představuje optimalizační techniky zaměřené na proces sběru výkonnostních dat
v rámci výkonnostní analýzy a profilování programů v nástroji Perun. Rozšíření architek-
tury a implementace těchto nových optimalizačních technik v nástroji Perun (a převážně pak
v jeho modulu Tracer) zlepšuje jeho škálovatelnost a umožňuje tak provádět výkonnostní
analýzu i nad rozsáhlými projekty. Zaměřujeme se především na zvýšení přesnosti sběru dat,
redukci množství instrumentovaných bodů programu, omezení časové režie procesu sběru
dat a výkonnostního profilování, snížení objemu sbíraných dat a velikosti výsledného výkon-
nostního profilu. Optimalizace je dosažena pomocí aplikace statistických metod, množství
technik statické a dynamické analýzy (případně jejich kombinací) a využitím pokročilých
možností a schopností nástrojů SystemTap a eBPF. Na základě vyhodnocení provedeného
na dvou vybraných projektech a množství experimentů můžeme konstatovat, že se nám
úspěšně podařilo dosáhnout značné optimalizace u téměř všech sledovaných metrik a kritérií.

Keywords
optimization techniques, performance analysis, dynamic analysis, static analysis, dynamic
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Rozšířený abstrakt
Složitost a rozsah počítačových programů stabilně roste každým rokem, přičemž dnešní
systémy jsou z hlediska velikosti a množství závislostí na externích nástrojích a knihovnách
neporovnatelné se systémy předchozích desetiletí. Přestože tento trend umožňuje vytvářet
stále sofistikovanější software a neustále posouvat hranice toho, co považujeme za možné,
přináší s sebou i negativní důsledky. Vývojem takto navzájem propojených systémů s vysokou
mírou závislostí vzniká hrozba, kdy i jedna kritická chyba — zavlečena do programu napřík-
lad v rámci pravidelných bezpečnostních záplat — může způsobit nejen pád samotného pro-
gramu, ale i velké řady na něm závislých systémů.

Právě z těchto důvodů dnes hrají čím dál tím důležitější roli techniky testování software,
nebo mnohem pokročilejší přístupy pro kontinuální sledování kvality vyvíjeného software
(známé pod pojmem CI: Continuous Integration). Zatímco však automatizovaná a včasná
detekce tzv. funkčních chyb (tedy chyb, které mění chování programu oproti jeho speci-
fikaci nebo zamýšlenému účelu) pomocí nástrojů pro kontinuální sledování kvality software,
jednotkového, systémového nebo regresního testování je v současnosti průmyslovým stan-
dardem, to samé neplatí v případě tzv. výkonnostních chyb. Výkonnostním chybám —
tedy těm, které standardně nemění chování programu, ale způsobují značné zpomalení jeho
běhu, vysokou odezvu na uživatelské akce nebo rovnou úplně znemožňují interakci s pro-
gramem — je v praxi běžně přikládán význam až ve chvíli, kdy začnou být postřehnutelné
jejich projevy při práci s daným programem. To vše přesto, že přítomnost, byť dočasná,
výkonnostních chyb může mít drtivý dopad na důvěru zákazníků ve vyvíjený produkt; stej-
ně jako je tomu v případě aplikací s přemírou funkčních chyb. Důvodem odlišného důrazu
na hledání funkčních a výkonnostních chyb je nedostatek nástrojů pro integraci a podporu
kontinuálního sledování kvality software v oblasti výkonnostního testování.

Nástroj Perun [20, 21], který vznikl a je vyvíjen v rámci výzkumné skupiny VeriFIT,
má za cíl poskytnout vývojářům právě takové prostředky, jež jsou potřeba pro odhalení
závažných výkonnostních chyb již ve stádiu jejich vzniku, což je možné díky přímému
propojení nástroje Perun s verzovacími systémy správy kódu (známé pod pojmem VCS:
Version Control Systems). Oproti jiným nástrojům zaměřeným na výkonnostní analýzu
(jako je například Valgrind [46, 73], OProfile [50] a jejich komerční varianty) tak Perun
navíc staví i na principech kontinuálního sledování kvality kódu aplikovaných v oblasti pro-
filování výkonu programů. Přestože jsme v minulosti již demonstrovali [66], že Perun lze
využít pro profilování malých a — do určité míry — i středně velkých programů, některé
použité techniky analýzy a sběru výkonnostních dat neškálují dostatečně na to, aby bylo
možné je aplikovat i na rozsáhlé programy.

Tato diplomová práce proto představuje několik nových, námi navržených optimaliza-
čních technik z oblasti výkonnostní analýzy, a jejich implementaci v nástroji Perun. Každá
z takto navržených technik je zaměřena na některé z definovaných optimalizačních kritérií,
jako je například zvýšení přesnosti profilace, redukce množství instrumentovaných bodů
programu, snížení velikosti výstupních souborů (obsahujících jak hrubá data získaná právě
z instrmentačních bodů, tak jejich transformance do výsledného profilu), zrychlení procesu
sběru výkonnostních dat a současně tak i zrychlení celého procesu profilování a lokalizace
výkonnostních chyb. Nejdříve je však zapotřebí uzpůsobit jádro nástroje Perun navržením
nové architekturu podporující optimalizační techniky, a současně rozšířit i aktuálně použí-
vaný sběrač výkonnostních dat: Trace Collector, označovaný také jako Tracer, který byl
navržen, implementován a dále rozvíjen v rámci naší předchozí práce [53, 55, 54]). Cílem
této práce je tak optimalizovat celý proces výkonnostní analýzy nástroje Perun (a obzvláště
pak jeho segment sběru výkonnostních dat) tak, aby dostatečně škáloval i pro rozsáhlé



produkční systémy, a umožnil tak jejich efektivní automatizovanou a kontinuální kontrolu
kvality z hlediska výkonnosti.

Ve své původní verzi byl sběrač dat, Tracer, implementován s využitím sady instrumen-
tačních nástrojů SystemTap, která umožňuje dynamickou instrumentaci binárních spustitel-
ných souborů. Možnosti instrumentace založené na nástroji SystemTap jsou však do určité
míry omezené a pro mnou zkoumané techniky optimalizace nedostačovaly, a proto jsem
v rámci práce provedl průzkum nové, velmi aktivně vyvíjené, instrumentační technologie
eBPF. Na základě prvotních experimentů a získaných poznatků jsem se rozhodl rozšířit
architekturu modulu Tracer tak, aby nově podporoval obě instrumentační techniky (tedy
jak SystemTap, tak eBPF) a uživateli umožňoval mezi nimi volně přepínat.

Celkem jsem v této práci navrhl sedm optimalizačních metod: Static Baseline, Dy-
namic Baseline, Call Graph Shaping, Diff Tracing, Dynamic Sampling, Timed Sampling
a Dynamic Probing, přičemž tyto techniky jsou založeny především na technikách sta-
tické a dynamické analýzy, nebo jejich vhodné kombinaci. Celý proces optimalizace pak
spočívá v aplikaci vybrané podmnožiny technik a na základě jejich výstupů je učiněno
rozhodnutí, které funkce budou nebo nebudou instrumentovány, případně s jakými instru-
mentačními parametry (například vzorkováním výstupních dat). V oblasti statické analýzy
jsem úspěšně využil nástroj Loopus [63] zaměřený na analýzu mezí (bounds analysis) a amor-
tizované složitosti (amortized complexity analysis) některých cyklů a funkcí ve zkoumaném
programu (Static Baseline). Dále jsem také představil několik nových přístupů založených
na průchodu grafu volání (call graph) a grafu toku řízení (control flow graph), z jejichž
struktury je možné aproximovat některé vlastnosti vybraných uzlů (Call Graph Shaping),
případně identifikovat změny napříč různými verzemi projektu (Diff Tracing). U dynam-
ické analýzy se naopak spoléháme na informace a indikátory získané (a) z předchozích běhů
nástroje Tracer pro danou konfiguraci profilování nebo (b) přímo za běhu profilování. Díky
tomu jsem schopnen precizně identifikovat instrumentované funkce, které jsou volány příliš
často a způsobují tak nezanedbatelnou časovou (Dynamic Baseline, Dynamic Probing) nebo
paměťovou (Dynamic Sampling, Timed Sampling) režii spjatou s profilováním. Za účelem
dosažení uživatelsky přívětivého rozhraní pro obsluhu optimalizací jsem se dále rozhodl
vytvořit sadu předkonfigurovaných kombinací optimalizačních technik a jejich parametrů
(tzv. pipelines), které mají umožnit jednoduchou volbu mezi různými úrovněmi preciznosti
optimalizací.

Na závěr práce jsem provedl rozsáhlé vyhodnocení těchto navržených a implemento-
vaných optimalizačních technik spolu s jejich předpřipravenými kombinacemi (pipelines)
na dvou vybraných projektech: implementaci CCSDS [1] obrazového kompresního enkodéru
a referenční impelemtace kompilátoru a interpretu jazyka Python, CPython [11]. Následně
jsem výsledky provedených experimentů porovnal s výchozím stavem bez použití jakýchko-
liv optimalizačních technik (pomocí sady předem vybraných evaluačních metrik) a na zá-
kladě těcho výsledků lze konstatovat, že se mi úspěšně podařilo optimalizovat proces výkon-
nostní analýzy v rámci nástroje Perun a dosáhnout tak vytyčených cílů této práce.
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Chapter 1

Introduction

“Programmers waste enormous amounts of time thinking about, or worrying
about, the speed of noncritical parts of their programs, and these attempts at
efficiency actually have a strong negative impact when debugging and
maintenance are considered. We should forget about small efficiencies, say
about 97% of the time: premature optimization is the root of all evil. Yet we
should not pass up our opportunities in that critical 3%.”

Structured Programming with go to Statements
— Donald E. Knuth

The complexity and scale of computer programs is steadily rising every year and Today’s
systems are hardly comparable to those of previous decades in terms of magnitude and
the amount of dependencies on external tools or libraries. While such trend allows us
to constantly build more sophisticated software and steadily push the limits of what is
possible, it also comes at a price. By developing systems and programs so interconnected
and dependent on (each) other, a critical failure — e.g. caused by an undiscovered bug,
mistakenly introduced by the latest patch — may not only crash the affected program, but
also a multitude of dependent systems.

For this reason, software testing, as well as more complex techniques such as continuous
integration (CI), begin to play an even more crucial role than ever before. However, while
automated, early detection of functional bugs through CI, unit, system or regression testing
has become an industry standard, performance defects are often not addressed until they
fully manifest themselves — by a noticeable slowdown of services or even by rendering the
system almost unusable. All the while poor software performance (even just a temporary)
is known to have dire effects on customers’ trust, as would a program ridden with functional
bugs. The reason why performance bugs are widely omitted, lies in the lack of continuous
monitoring and integration tools dedicated to performance analysis.

Perun [20, 21], authored and maintained by the VeriFIT group, attempts to fill the gap
and aid developers in detecting severe performance degradations as soon as they emerge,
i.e. whenever a new project version is created in Version Control System (VCS). Unlike
other various profiling frameworks, tools and tool suites (such as Valgrind [46, 73], OPro-
file [50] and many commercial ones), Perun also leverages the principles of CI and applies
them in the field of performance analysis. Although Perun has been proven capable (as
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demonstrated in [66]) of profiling small and — to a certain extent — medium sized projects,
some of the analyses are still insufficient for large code bases.

In this work, we introduce several novel optimization techniques for performance analysis
and their implementation within the Perun framework. The proposed techniques strive
to scale down the amount of injected instrumentation, optimize the volume of collected
raw performance data, reduce the size of resulting profiles or diminish the time overhead
incurred by not only the performance data collection phase, but also the whole profiling and
degradation detection process. In order to do so, first we focus on extending the Perun core
with new optimization architecture, and enhancing the Tracer module (introduced in our
previous work [53, 55, 54]) which implements the performance data collection. The goal of
this Thesis is to optimize the workflow (and especially the data collection segment) of Perun
so that even large programs and production systems can be efficiently and continuously
analyzed for performance defects.

Structure of the Thesis. Chapter 2 introduces the topic of system observability using
the tracing, sampling and instrumentation — techniques especially useful in the field of test-
ing and, notably, performance analysis. In Chapter 3, we describe the difference between
parametric and nonparametric statistical models, along with their examples. Specifically,
only methods utilized by the Perun framework for performance data modelling are con-
sidered. An overview of the Perun framework, its workflow and architecture is briefly
presented in the Chapter 4. Moreover, this Chapter also contains a detailed description of
Tracer — a performance data collection module within the framework which is leveraged to
evaluate the proposed optimization techniques. We argue that proper specification of the
Thesis’ requirements, goals and evaluation strategy is crucial for its success, hence, Chap-
ter 5 identifies the Functional and Non-function Requirements of this work, introduces the
selected Optimization Criteria used to design the optimization techniques and defines the
Evaluation Metrics leveraged to assess the achieved results. In Chapter 6, we address the
current shortcomings of Perun and Tracer architecture, as well as design and implement
modules that aim to provide the missing features. Chapter 7 is the core of this Thesis — we
introduce and thoroughly describe the proposed optimization techniques and their com-
binations, called pipelines, designed to present the user with easy-to-use, pre-configured
optimization settings. During the evaluation, we generated an enormous amount of data
and thus, Chapter 8 attempts to present the results in a compact, yet descriptive way.
The final Chapter 9 summarizes the results achieved in this work, evaluates whether we
satisfied all of the specified requirements and outlines potential improvements that could
be addressed in the future work.
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Chapter 2

System Observability

We begin with the introduction of static and dynamic analysis, system and application ob-
servability as well as the commonly leveraged observability techniques — instrumentation,
tracing and profiling. These techniques are particularly useful in the field of performance
analysis since they can provide the necessary data about the resource management or the
execution time of the system under test (SUT). First, we lay out the basic terminology
regarding analysis and observability, followed by a description of state-of-the-art instru-
mentation approaches and solutions. Finally, we list a selection of publicly available tools
and frameworks supporting dynamic instrumentation, tracing and profiling.

2.1 Static and Dynamic Analysis
Program analysis is nowadays widely exploited in many fields of computer science and
software engineering, such as source code compilation, program debugging, testing, formal
verification and especially in the area of performance tuning. Due to the often fundamen-
tally different approaches in tackling the analysis task, we categorize the analysis tools
into different groups. In particular, we will attempt to introduce one of the many possible
(however, quite broadly used) classifications of analysis, as presented by [45].

Static analysis performs the analysis on the source code of the program, without the
need to actually run it. This definition incorporates many traditional techniques such as
data flow analysis, constraint-based analysis, type-based analysis, abstract interpretation
or searching for error patterns; Sometimes even the more advanced techniques commonly
leveraged by formal verification — such as theorem proving or model checking — are viewed
to be part of the static analysis group (as described in [34]). Static analysis has found, e.g.
in type checking, correctness analysis and optimization done by compilers, intelligent code
completion, code highlighting or code transformation hints in development environments
and many more. By definition, static analysis can be sound (a term originated in mathe-
matical logic: a deductive system is sound with respect to a semantics if it only proves valid
arguments [78]), unlike the dynamic analysis. Even though static analysis is rarely used in
the field of performance analysis (apart from e.g. compiler optimizations), some approaches
have been recently proposed: the Mira framework [43], for example, builds a performance
model of the program based on the target architecture, source and machine code. The re-
sulting model is subsequently analyzed in order to discover possible optimizations, without
the need to actually run the program.
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Dynamic analysis, on the other hand, focuses on examining the program behaviour
during its execution — be it an execution on real processor, synthetic one or entirely sim-
ulated by a virtual machine (such is the case with tools like Valgrind [46], Pin [39] or
DynamoRIO [5] in the performance analysis field). An essential element of most of the
dynamic analyses (although not all of them, e.g. software testing) is instrumentation. Dy-
namic analysis is typically leveraged by tools such as profilers, checkers, execution visualisers
or performance analyzers [45]. Software testing is also considered to be a part, or at least a
closely related field, of the dynamic analysis scene. While static analysis generally covers all
the possible execution scenarios, dynamic analysis is restricted only to the actually executed
paths — however, the obtained results are guaranteed to be a close estimation of the actual
runtime values. Measuring function execution time (in real elapsed time), for example, by
using dynamic analysis yields more accurate values, compared to static analysis techniques.

Representation
Model

(AST, Polyhedral, ...)
OptimizationParsing & Processing

Optimization

Tracepoints,
Instrumentation

Probes,
Instrumentation

Collect,
Sample,

Trace

Performance Model
(optional)

Modified
Executable File

STATIC

DYNAMIC
Running

Executable File
Source code

Machine code

Source code

Machine code

Figure 2.1: An illustration of the different analyses in the field of performance analysis.
Both static and dynamic analyses usually leverage source and machine code to either parse
and process or inject instrumentation, respectively. The biggest difference is that dynamic
performance analysis needs to run the executable file in order to obtain performance data.

Apart from the dynamic and static categories described above, [45] also proposes another
possible classification, orthogonal to the previous one:

• Source analysis is performed exclusively on the source code level. This type of analysis
is generally utilizing common constructs of programming languages, such as functions,
statements, expressions and variables. Typically, compiler optimizations and many
IDE features are built around the source analysis.

• Binary analysis is focused solely on the intermediate (object) or machine code. His-
torically, the binary analysis had been limited to various proprietary virtual machines
interpreting custom byte-codes (assembled from the original machine code) that simu-
lated necessary instructions, registers and memory locations. However, with the origin
of built-in HW and SW counters (used by, e.g. Perf [17]), hooking mechanisms, probes
and tracepoints, binary analysis techniques has considerably shifted.

Figure 2.1 illustrates the different combinations of analysis approaches as utilized by
the performance analysis. In this work, we will focus on the dynamic and binary analysis,
however, we might also explore the possibilities of some static and source analysis techniques
in the area of performance analysis.
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2.2 Observability, Tracing, Sampling and Instrumentation
According to [6], system observability is explained as “the capacity that we have to ask
arbitrary questions and receive complex answers from any given system. A key difference
between observability, logs and metrics aggregation is the data that you collect. Given that
by practicing observability you need to answer any arbitrary question at any point in time
[. . .]”. Additionally, [28] states the system observability refers to “understanding a system
through observation, and classifies the tools that accomplish this. These tools include tracing
tools, sampling tools, and tools based on fixed counters”.

Based on the above definitions — albeit quite different — the observability is:

• a way to understand the given system by asking arbitrary questions whenever needed,

• achieved using tools for tracing, sampling and accessing fixed (SW or HW) counters.

The tracing, sampling (profiling) and instrumentation techniques are essential for dy-
namic observation and performance analysis of the target systems or applications. In or-
der to better understand their use-cases and limitations (and consequently understand
the capabilities of corresponding tools), we provide an explanation of the terms (based
on [28, 4, 51, 39, 62]).

Tracing can be generally described as an event-based recording. This, rather broad,
definition is in practice usually restricted to a handful of use-cases:

• recording the syscall or signal events (see Section 2.5.1 for details on strace [64]),

• recording the function — be it in kernel (such as the ftrace utility [59], see Sec-
tion 2.5.1) or user space — and library function calls (e.g. the ltrace utility [36]),

• measuring events by fixed statistical counters or static points (e.g. the top utility [70]),

• recording network events, such as incoming or outgoing packets, e.g. tcpdump [68],

• and other, mostly custom and proprietary use-cases.

A typical characteristic of tracing is that it records large quantities of raw data and meta-
data, so post-processing techniques (e.g. creating snapshots or filtering and compressing
the data, etc.) usually need to be utilized. The recovered call or event sequence trace can
be traversed and examined in order to detect bugs in execution, unexpected or unwanted
behaviour, performance changes, security risks or hazards, diagnose the cause of a failure,
or be used in the process of optimization and assessing code or execution metrics (e.g. test
coverage). The possible performance issues are usually identified through redundant calls
or events, notable change in timestamp variance or average call hierarchy depth.

Sampling tools “take a subset of measurements to paint a coarse picture of the tar-
get” [28]. Unlike the tracing technique, the sampling only attempts to measure the relevant
data or counters in (usually) fixed intervals — either elapsed time, CPU frequency or event
count threshold. Although this approach can substantially reduce the amount of perfor-
mance overhead imposed on the program under evaluation compared to the tracing, the
accuracy and precision of obtained data is, more often than not, negatively affected.
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A note on profiling:

Some authors (notably [28]) tend to view the sampling and profiling terms as identi-
cal, or at least very close to each other. However, in this thesis, we adopt the notion
of profiling as an inherent technique (or a collection of techniques) for obtaining and
assessing performance information of a program [51].

Instrumentation is a technique that allows for a detailed surveillance of selected appli-
cation locations as they are executed. This surveillance is achieved by either adding extra
code or software probes to the source code, or by utilizing some of the more advanced meth-
ods, such as: modifying directly the machine code or creating a new virtual layer between
the application and the system, and thus intercepting system calls or kernel instructions,
etc. Instrumentation is an essential component of tracing, sampling and profiling as it al-
lows to specify what additional data will be produced by the program during its execution
(e.g. timestamps to determine the time consumption of functions or code blocks).

The two following Sections 2.3 and 2.4 focus on two types of instrumentation techniques,
as they are both heavily leveraged by the Tracer module of the Perun (see Section 4) project.

2.3 Static Instrumentation
Instrumentation is considered to be static if the instrumentation code1 is injected before the
program starts. The instrumentation can be performed either directly on the source code,
or more advanced approach of modifying the machine code may be taken — these techniques
are, however, usually not straightforward, nor reliable for production environment. There-
fore, the dynamic or static source code instrumentation is often preferred. Nevertheless,
some notable advancements have recently been made in the field of static binary instru-
mentation [81] and new tools for reassembleable disassembling, such as Uroboros [72, 76],
are emerging. However, since the static binary instrumentation is not utilized in this work,
it will not be further discussed.

One of the notable advantages of the source code instrumentation is the absence of
interface stability issue and inlining problem, both of which manifest themselves during the
dynamic instrumentation [28] (see Section 2.4 for more details). On the other hand, main-
taining certain forms (primarily tracepoints and user-space statically defined tracepoints,
but usually not the compiler-aided instrumentation, for example) of the source code instru-
mentation can be time-consuming and hinder good maintainability, if managed poorly.

2.3.1 Tracepoints and User-space Statically Defined Tracepoints

Tracepoints [13, 6, 28] are static markers scattered around the kernel code that handles vir-
tual memory, networking, file system, drivers, etc. Tracepoints evolved from the previously
used kernel markers [8] which were having issues due to some of their shortcomings, such
as insufficient type checking. Each tracepoint serves as a hook2 for function that can be
provided at runtime, and if the tracepoint is enabled, the supplied function is called when-
ever the kernel execution reaches the tracepoint statement. The declaration of tracepoint

1The code that is being added to the program
2This expression usually refers to a code location, instruction or operation that can be accessed by tracing

and profiling tools when needed, and we will use it as such.
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also discloses which parameters or internal variables are accessible by the function, which
often proves to be invaluable for debugging and monitoring.

Tracepoints are designed to be very lightweight and as such, disabled tracepoints incur
only tiny performance overhead (in terms of both memory and execution time). Every
tracepoint has to be added or modified manually by the kernel developers — which is one of
the reasons why tracepoints are considered to be stable API, and thus change very rarely.

Listing 2.1: An example of kernel tracepoint declaration that utilizes the TRACE_EVENT
macro. Detailed description of the individual macro parameters can be found at [60].
// i n c l u d e / t race / even t s / tcp . h
TRACE_EVENT( tcp_retransmit_synack ,

TP_PROTO( const struct sock ∗sk , const struct request_sock ∗ req ) ,
TP_ARGS( sk , req ) ,
TP_STRUCT__entry( . . . ) ,
TP_fast_assign ( . . . ) ,
TP_printk ( . . . )

) ;

In order to define a new kernel tracepoint, one of the many available C macros has to
be used (originally, only DECLARE_TRACE and TRACE_EVENT were proposed, however, the
current kernel source code contains numerous other macros presumably built on top of the
original ones). The Listings3 2.1 and 2.2 demonstrate the declaration and usage of one such
kernel tracepoint that is used in the ipv4 networking code.

Listing 2.2: An example of kernel tracepoint usage at TCP networking source code location.
This tracepoint can be accessed by tracing or profiling tools (such as ftrace, SystemTap or
BPF) in order to record what TCP SYN-ACK packets were retransmitted.
// net / ipv4 / tcp_output . c
int tcp_rtx_synack ( const struct sock ∗sk , struct request_sock ∗ req )
{ . . .

i f ( ! r e s ) { . . .
trace_tcp_retransmit_synack ( sk , req ) ;

} . . .
}

The User-space Statically Defined Tracepoints (USDT) [28, 6] are based on the same
principle as the kernel tracepoints with one key difference — USDT are meant for the
user applications. This grants the developers of custom applications the power to cre-
ate tracepoints in their own code at semantically sensible locations (e.g. query__start and
query__done tracepoints in mysql). The necessary steps to add an user tracepoint are
much easier than the kernel one, and roughly consist of linking the sys/sdt.h header file
which contains the needed macros, such as DTRACE_PROBE (the macro was named this way
since both USDT and tracepoints were greatly influenced by, and based on, the original
mechanism introduced by the DTrace [15] framework developed by the Sun Microsystems).
The Listing 2.3 shows an example of USDT locations found in the Ruby4 project.

3Taken from https://github.com/torvalds/linux/blob/master
4More information available at: https://www.ruby-lang.org/en/

9

https://github.com/torvalds/linux/blob/master
https://www.ruby-lang.org/en/


Listing 2.3: An example of USDT hooks available in the Ruby. The tracepoints are placed
at code locations for e.g. array allocation, C methods calls and returns, garbage collection
phases etc. The SystemTap (see Section 2.5.4) tool was used to list the available tracepoints.

$ stap − l ’ p roc e s s ( " . / ruby " ) . mark ( " ∗ " ) ’
p roce s s ( " . / ruby " ) . mark ( " array__create " )
p roce s s ( " . / ruby " ) . mark ( " cmethod__entry " )
p roce s s ( " . / ruby " ) . mark ( " cmethod__return " )
p roce s s ( " . / ruby " ) . mark ( " find__require__entry " )
p roce s s ( " . / ruby " ) . mark ( " f ind__require__return " )
p roce s s ( " . / ruby " ) . mark ( " gc__mark__begin " )
p roce s s ( " . / ruby " ) . mark ( "gc__mark__end" )
p roce s s ( " . / ruby " ) . mark ( " gc__sweep__begin " )
p roce s s ( " . / ruby " ) . mark ( "gc__sweep__end" )
. . .

Tracepoints and USDT are currently supported by most of the relevant tracing and
profiling tools or frameworks, such as LTTng [38], perf, SystemTap, or eBPF. Tracepoints
can be leveraged by performance analysis, for example, to easily measure the duration of
specific program operations spanning across multiple functions (e.g. garbage collection).

2.3.2 Compiler-aided Instrumentation

<main>
...

mov    $0x0,%eax

callq    6fa <foo>

retq

...

lea    %rip,%rdi

callq    76c,<__cyg_enter>

* user-supplied entry *
* instrumentation code *

...

callq    79b,<__cyg_exit>

...

pop    %rbp

retq
...

* user-supplied exit *
* instrumentation code *

Figure 2.2: An example of
the GCC instrumentation and
its translation into the binary.

While the tracepoints have to be manually inserted by the
developer, compiler-aided instrumentation takes a differ-
ent approach: instrumentation is done by the compiler
itself. Generally, the instrumentation is done in the in-
termediate and code-generation phases of the compilation
by injecting new instructions (such as invoking a call-
back function) into target locations (e.g. function entry
points). In particular, we will describe the compiler-aided
instrumentation on two compilers: GCC5 and LLVM6.

GCC native instrumentation [22] is considerably lim-
ited. Even though GCC is capable of instrumenting
many code locations (e.g. the -fprofile-arcs option
adds instrumentation to code locations such as branches
or calls), the flexibility is usually severely restricted,
i.e. the user has no control over what instrumenta-
tion code is being injected. The only exception is the
-finstrument-functions option which instruments the
entry and exit points of all the user functions with
new callback functions. Although this approach is quite
cumbersome, it can be exploited to create an auto-
mated and viable — however a bit limited and inflexi-
ble — performance profiling tool, as demonstrated by our
previous work [52]. Figure 2.2 depicts the result of the
function instrumentation on an example binary file.

5The GNU Compiler Collection: https://gcc.gnu.org/
6The LLVM Compiler Infrastructure: https://llvm.org/
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LLVM offers state-of-the-art support for instrumentation — mainly thanks to its modular
design, plugin support and Internal Representation (IR) accessibility — which incentivized
the creation of many instrumentation tools and frameworks, both highly purpose-specific
and generic ones. Tools such as XRay [74], LLVM Instrumentation Plug-in for Score-P [71],
Loom library [77] or the instrumentation tool proposed in [75] attempt to instrument myriad
of basic source code blocks or IR elements (function entries and exits, memory reads and
writes, variables etc.). Some of the tools (for example the XRay) even go as far as providing
a way to dynamically enable and disable the instrumentation at runtime.

Although static instrumentation is powerful and robust, it still imposes some drawbacks.
Namely, the source code has to be modified (tracepoints) or the compilation process has to
be involved (compiler-aided instrumentation). This is especially limiting if, for some reason,
source code of the application is not available, cannot be modified or the re-compilation is
not an option — such is the case with many commercial or system applications.

2.4 Dynamic Instrumentation
Since static instrumentation proves to be limiting in certain scenarios, the dynamic in-
strumentation adopts a different approach which makes it possible to add instrumentation
during the application runtime — without any preceding modifications done in the source
code or by the compiler.

2.4.1 Early and Proprietary Solutions

The idea of dynamic instrumentation was initially introduced by Hollingsworth and oth-
ers [30], who proposed an instrumentation technique that directly modifies the binary image
of the running application. The so-called base trampolines and mini trampolines (essentially
a blocks of instructions) are inserted into the executed machine code to invoke the instru-
mentation code (primitive). Using this approach (with some modifications), first tools for
performance analysis and debugging, such as KernInst [67], have appeared.

However, since such direct modifications of running applications are perceived (and
rightly so) as extremely risky, architecture specific and thus unreliable, more robust tech-
niques were pioneered. These techniques revolved around utilizing synthetic processors (or
virtual machines) that act as an additional virtual layer between the application and the
system, thereby allowing such tools to instrument the binary code safely and control (or
simulate) the execution flow.

The instrumentation is usually done using the dynamic compilation — a process, where
the virtual machine dismantles the binary image into separate blocks which are then dynam-
ically recompiled using a just-in-time (JIT) compiler, so that additional instrumentation
code is injected. Valgrind [46], Pin [39] and DynamoRIO [5] are three most widely used
frameworks based on this principle.

Nevertheless, these heavyweight frameworks are not well suited for potential deploy-
ment in the field of performance analysis due to the notable overhead (usually both in
terms of memory and time) and the insufficient precision incurred by the recompilation
and simulation processes.
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2.4.2 State-of-the-art: uprobes and kprobes

The early attempts to make dynamic instrumentation work were quite “obscure” [28], yet,
they helped to pave the way for more advanced, safe and reliant techniques used nowadays.
One of such techniques are Kernel Probes (kprobes) (and its user-space counterpart, uprobes)
which rely on native support from the operating system (the Linux kernel in this case).

A kernel probe is a set of handlers — the most important ones being the pre- and post-
handlers — bound to a specific instruction address [23]. If a kernel probe handler is pro-
vided and registered (usually using kernel modules) for certain address, the kernel injects
breakpoint, debug or one of many exception handling instructions at the given location
(e.g. int 3 or debug-exception for x86 architecture).

Whenever execution reaches the trap instruction, control is passed to the user-supplied
handlers (also, context is stored and interrupts are temporarily disabled, among other addi-
tional kernel operations). User probes leverage a similar mechanism as kernel probes, albeit
with some implementation differences such as supporting a different set of handlers and ex-
ploiting virtual memory pages to inject trap instructions [10]. The Figure 2.3 illustrate the
mechanism of a kernel probe being hit.

Compared to the its static counterpart, the latest dynamic instrumentation techniques
offer “visibility so deep and comprehensive that it can feel like a superpower” [28]. One
of the most appealing feature is the ability to instrument a running application without
heavily impairing its execution time or stability.

int3 hit

kprobe
pre-handler

probed instruction
(single step)

kprobe
post-handler

next instruction

Wrapper Wrapper
do_int3 do_debug

debug-exception

Figure 2.3: An illustration of kernel probe mechanism which utilizes breakpoint and ex-
ception interrupts (int3 and debug_exception) and the corresponding handlers (do_int3
and do_debug) to dynamically add instrumentation. Image adapted from [23].

However, dynamic instrumentation has its drawbacks, namely the interface stability is-
sue and the inlining problem. The interface stability issue is encountered when the internals
of the examined program or kernel change and previously available functions or events are
renamed or removed which can be a complication for automated tracing tools. Similarly,
the inlining problem is caused by the compiler optimization, which renders certain functions
uninstrumentable since there is no such symbol to be found in the resulting binary image.

2.5 Performance Analysis Frameworks and Tools
We briefly introduce several tools and frameworks that support dynamic instrumentation
and tracing, and could be leveraged for building a performance data collection tool. In
this work, we focus on the Tracer — a performance data collection tool described in Sec-
tion 4.2, already introduced in our earlier work [53, 54, 55] — which leverages the SystemTap
framework. We also propose we can extend the Tracer with the eBPF framework in or-
der to utilize some of its more advanced features, which are not supported by SystemTap.
However, all of the following tools and frameworks had been considered as the underlying
instrumentation layer when Tracer was originally proposed.
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2.5.1 The Linux Tracing Family

Strace [64, 12] is a tool for tracing syscall and signal events related to a specific process.
Strace relies on the ptrace system call (as do also debuggers for example, to implement the
breakpoint functionality) to inject code which invokes SIGTRAP interrupt for the events (e.g.
syscall entry and exit points) as well as to provide a way to access parameters or return
values. Thus, when a system call is to be executed, kernel halts the traced process and
notifies the tracer so that it can perform its operations, after which the process is resumed.

Ftrace [59, 16, 58] is a tool originally designed to trace kernel functions. However,
since then ftrace has been heavily extended to also support call graph and kprobes trac-
ing, tracepoints or various latency tracers. The function tracer leverages compiler-aided
instrumentation (e.g. -pg option for GCC) to inject a mcount function call into every
kernel function. During the system boot, all mcount calls are transformed into the NOP
instructions. When the function tracer is enabled, these NOP instructions are dynamically
changed back to the mcount function call. The communication (acessing trace records) is
done through an internal kernel ring buffer structure and the debugfs file system.

Ltrace [36, 37] is primarily a dynamic library call tracing tool, however, it can also trace
system calls and signals similarly to the strace tool. Ltrace relies on the ptrace system call
which is used to inject breakpoint instruction into the Procedure Linkage Table (PLT) — a
linkage table that keeps track of assembly instructions needed to call every external function
(i.e. located in a dynamic library) since the address of the function is not known prior to
the runtime. The injected breakpoint is then utilized in the same way as with strace.

Albeit the strace, ftrace and ltrace are certainly powerful tools for tracing specific
operations and events, they all share one common shortcoming from our point of view: not
being general-purpose. For this reason, a versatile tracing tool with the required tracing
capabilities could be created only by incorporating all of the tracing tools.

2.5.2 DTrace

DTrace [15, 27, 9] stands for Dynamic Tracing — a complex instrumentation framework
designed to provide observability across the whole software, i.e. the kernel as well as the
user-space, libraries, signals, file systems, drivers and many more — and was originally
developed for the Solaris OS. DTrace utilizes probes to specify instrumentation points. The
means of probe attachment (i.e. the instrumentation) is dependant on the providers which
implement the instrumentation according to the specifics of the target layer, e.g. kernel
functions, syscalls, user application, tracepoints etc. When the probe fires (i.e. is triggered
by reaching the instrumented instruction), a user-supplied probe handler is executed.

The biggest drawback of the DTrace — until recently, since official port from Oracle has
already been released — had been its absence on Linux platforms, apart from some unofficial
ports. However, currently the eBPF framework is considered to be superior in terms of
available features and overall more capable7.

Compared to the Linux tracing tools, DTrace is generic enough to be utilized as an
underlying instrumentation framework, however, it is lacking proper Linux support and the
language for defining probe handlers is somewhat restricted (e.g. not supporting loops or
non-trivial branching) compared to e.g. SystemTap or eBPF.

7http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html
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2.5.3 Perf

Perf [17, 56, 26], also referred to as perf_events, is an event-oriented observability tool
that can perform counting, tracing and profiling of events coming from different sources.
Originally, Perf focused on exploiting the performance counters subsystem in Linux to
implement a profiling tool based on the performance counters.

Hardware performance counters are CPU hardware registers managed by the Perfor-
mance Monitoring Unit (PMU) which is a part of the CPU. These registers count events
such as executed instructions, cycles, cache accesses or misses, mispredicted branches and
so on. Software events, on the other hand, refer to pure kernel counters such as page faults,
context switches, alignment faults or task clock.

However, the Perf tool has been enhanced to also support number of additional events
such as kernel tracepoints, USDT, dynamic tracing (provided by the uprobes and kprobes)
and timed profiling. Timed profiling is a technique that collects snapshots of counters, trace
stacks or other events periodically at an arbitrary frequency (e.g. perf record -99Hz).
The Figure 2.4 illustrates the available events and their categories in a map.

Figure 2.4: A scheme of the available perf events, their categories (such as dynamic
tracing, static tracing, hardware and software events) and the corresponding tracing and
sampling mechanisms (kprobes, uprobes, tracepoints, performance monitoring counters, etc.)
arranged into a map. The map illustrates the essential system components, e.g. file system,
virtual memory, networking, drivers, scheduler, communication buses, etc. Taken from [26].

Perf consists of a collection of commands such as stat (for counting events), record
(for profiling, timed or regular), record (for static tracing using tracepoints), probe (for
dynamic tracing using uprobes and kprobes) and other (e.g. top for tracing system calls
by process, similar to the linux top utility). These commands produce output in a binary
format so Perf supplies additional commands for presenting the recorded data (such as
report or script).
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Nonetheless, perf does not support user-supplied handlers for probes or events, i.e. it
is not possible to precisely define operations that should be executed when a probe is fired
or event is encountered, unlike e.g. the DTrace tool which uses its own C-like scripting
language for defining probe handlers. Moreover, the binary output format makes it difficult
to process the raw output data in a different way than what the built-in interpretation
commands offer.

2.5.4 SystemTap

SystemTap [24] is a powerful, general-purpose, tracing and profiling framework. As stated
in [33], “SystemTap is not so much a tool as it is a system that allows you to develop your
own kernel-specific forensic and monitoring tools”. It supports all of the current state-
of-the-art dynamic instrumentation and probing mechanisms: kprobes, uprobes, kernel
tracepoints, USDT, performance counters and — thanks to its rich scripting language —
even some basic in-kernel programming.

SystemTap utilizes custom kernel modules to inject probes and their handlers, i.e. the
actions that are performed when probe fires. The kernel modules are created from the
user-supplied scripts in several steps:

1. User writes a SystemTap script containing probes and their corresponding handlers.

2. SystemTap then checks the script for any tapsets used (an abstraction that shields
away the implementation details of probes and kernel layer, similarly to how libraries
are used in programming languages), in which case it substitutes the tapsets with
their definitions.

3. The script is translated into the C language.

4. The C code is compiled into a kernel module that is then loaded.

Due to its complexity, SystemTap used to have issues — with occasionally causing kernel
panics or freezes on previous kernel versions — most of which nowadays seem to be resolved.
Moreover, SystemTap needs kernel debuginfo packages (also depending on the Linux dis-
tribution, the installation process may get quite complicated) to function properly and
utilize its full potential. However, at the time of Tracer (see Section 4.2) development,
it still offered much more flexibility and power than perf, had official support (unlike the
DTrace) and had stable development branch with most of the important features available
(unlike eBPF at the time). For those reasons, SystemTap has been used as the underlying
instrumentation and tracing layer for Tracer.

2.5.5 eBPF (BPF)

BPF [28, 6] stands for Berkley Packet Filter — until recently just a network packet filter
tool that revolutionized [42], at its time, the way that packet filtering was done. Recently,
the extended Berkley Packet Filter (eBPF) has made its appearance and turned the BPF
into an impressive general-purpose engine inside the kernel that makes it possible to create
advanced observability tools — similar to the SystemTap framework.

BPF is essentially a virtual machine inside the kernel that has its own instruction set,
storage objects and helper functions. The BPF engine consists of an interpreter and just-
in-time (JIT) compiler that translate the executed BPF instructions into a native system
instructions. The BPF program can be supplied during kernel runtime, without the need
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Figure 2.5: The eBPF workflow which consists of generating the BPF bytecode, verifying
it, running it via the virtual machine (engine) within the kernel and storing the resulting raw
data into the BPF maps or directly as a perf output. The illustration is taken from [25].

to recompile or restart any service. Moreover, any BPF program is first of all checked by a
verifier that scans the code for potential stability issues that could lead to a crash or kernel
panic making it a lot safer and robust than the kernel module approach used in SystemTap.

The communication between kernel and user-space is done through a BPF maps [44]:
a generic key:value data structures created from user-space through a BPF system call.
Since the maps are generic, the key and value types can be complex enough to allow for
custom output formats. Figure 2.5 illustrates the whole BPF workflow in a simplified way.

This design greatly improves the means of dynamic in-kernel programming and allows
the user to run custom mini programs in the kernel. However, a significant drawback is
that BPF programming is difficult, since it has to be done using the BPF bytecode. Thus,
a BPF frontends (e.g BCC, bpftrace or ply) were created to abstract the BPF internals.

We sumarize all the listed tools and frameworks in the Table 2.1. As shown, the Sys-
temTap and eBPF frameworks support the most of the essential requirements for building
a versatile profiling tool. The only difference lies in the support of fully dynamic tracing
(i.e. the ability to enable or disable the probes and handlers even when a tracing process
is running) which is presently supported only by the eBPF framework.

Table 2.1: A summary of all the tools and frameworks and their supported features. We
considere the tool as general-purpose if it can be easily leveraged by another high-level
tool to create versatile performance analysis tool. Flexible handlers ensure that specific
event handlers support a wide range of operations and programming primitives (such as
branching or loops). The fully dynamic tracing feature describes the ability to dynamically
enable or disable probes and handlers even during an ongoing tracing.

Linux Tracing Tools Perf DTrace SystemTap eBPF
Supports probes 3 3 3 3 3

Supports tracepoints 3 3 3 3 3

Supports counters 7 3 3 3 3

General-purpose 7 3 3 3 3

Define own handlers 7 7 3 3 3

Flexible handlers 7 7 7 3 3

Fully dynamic tracing 7 7 7 7 3
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Chapter 3

Statistics-based Performance
Models

We will briefly familiarize the reader with the topic of data models utilized in the area of
performance analysis. However, since the field of statistical modelling is a vast subject with
great variety of methods, models, techniques or approaches and even their quick overview
would be out this Thesis’ scope, we decided to focus only on those currently leveraged by
the Perun framework. We will first emphasize the difference between parametric and non-
parametric models and then follow with a description of four kinds of models: regression
analysis, regressogram, moving average and kernel regression. In our experimental evalu-
ation, we will use these models to evaluate the impact of individual optimizations on the
modelling precision as they are an important aspect of performance analysis.

3.1 The Categories of Models
In statistics, models can be categorized — among other possible classifications — as either
parametric or nonparametric. The description of the model classes in this Section is based
on [82, 83, 32, 7, 66].

Parametric models, generally, attempt to estimate an unknown parameter in a known
parametric form. In order to do so, a sufficient amount of prior knowledge about the
underlying data is required, i.e. the parameters (not their values though) of the model
have to be known. Thus, ifℳ𝜃 is a known parametric form with unknown parameter 𝜃, Θ
is a parameter space and the studied model belongs to a parametric family {ℳ𝜃, 𝜃 ∈ Θ},
estimating the parameter 𝜃 is the main task of the model.

The drawback of a parametric model is its limited flexibility compared to the nonpara-
metric approach and also its dependence on assumptions made about the data. However,
the resulting parametric model is guaranteed to produce more reliable results for non-normal
distributions or otherwise skewed data.

Nonparametric models, on the other hand, do not assume any specific parametric form
ℳ𝜃 (since they cannot be parametrized by a fixed number of parameters), and instead rely
on a certain smoothness assumption. By not utilizing a parametric form, we acknowledge
that the underlying data in fact have parameters, but they are not fit for constructing
a model due to their dynamic nature or due to our insufficient knowledge about them.
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Nonparametric models are often considered to be more flexible and robust — mainly
thanks to fewer assumptions being made about the data, unlike the parametric models.
However, to infer a conclusion with high value of confidence, more data is usually required.

3.2 Regression analysis
Regression analysis [14, 55, 7] is a parametric statistical method that investigates the rela-
tionship between two (or generally more) related variables 𝑥 and 𝑦. The variable 𝑥 is often
described as independent, predictor or explanatory variable, while the variable denoted as
𝑦 is referred to as dependent or response variable. Regression analysis expresses the dis-
covered relationship in the form of regression function which can be further used to predict
the dependent variable (𝑦) for any independent value (𝑥).

For a random bivariate data (𝑥1, 𝑦1), (𝑥2, 𝑦2) . . . (𝑥𝑛, 𝑦𝑛), the most elementary deter-
ministic mathematical relationship is linear and in order to describe it, a Simple Linear
Regression Model is leveraged. This model is expressed as 𝑌 = 𝛽0 + 𝛽1𝑥+ 𝜖, where 𝛽0, 𝛽1
denote the 𝑦-intercept and slope, respectively, of a linear function and 𝜖 is referred to as the
random deviation or random error term. The true regression line stands for the resulting
linear function — the truthfulness refers to the fact that 𝑦(𝑥𝑖) ̸= 𝑥𝑖, but instead 𝑥𝑖 differs
from the function exactly by the 𝜖𝑖 value. To express the goodness-of-fit of the regression
function, a coefficient of determination (denoted by 𝑅2, values in an interval of [0, 1]) is
used. The coefficient of determination can be interpreted as the proportion of observed 𝑦
variation that can be explained by the regression model [14]. Figure 3.1 depicts an example
of the Simple Linear Regression Model.

Figure 3.1: An illustration of the Simple Linear Regression Model (as found in [14]) that
shows the independent (𝑥) and dependent (𝑦) variables, resulting true regression line and
the random deviation of the value pairs (𝑥𝑖, 𝑦𝑖).

The regression analysis can be successfully exploited in the field of program performance
analysis (as shown, for example, by our previous work [52, 55] which utilized not only linear,
but also logarithmic, quadratic or exponential regression to estimate the time complexity
of functions) since the independent variable 𝑥 can be mapped to e.g. workload volume,
data structure size or cache limit and the dependent variable 𝑦 can represent the time
consumption of a function or an instruction block. However, in some cases, the independent
variable is not easy to identify or cannot be measured — in cases like this, a nonparametric
approaches prove themselves useful [66].
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3.3 Regressogram
While regression analysis attempts to estimate the regression function 𝑌𝑖 = 𝑚(𝑥𝑖)+𝜖𝑖 using
a parametric form such as 𝑚(𝑥) = 𝛽0 +𝛽1𝑥, nonparametric methods, like regressogram, do
not impose any parametric form (arising from e.g. a linearity assumption) on the 𝑚(𝑥).

Figure 3.2: An example of the regressogram (cyan) and regression analysis (yellow) meth-
ods applied to performance data collected by the Trace collector (see Section 4.2). The 𝑥
axis represents the call order of the function fast_breakcheck and the 𝑦 axis shows the
time consumed by every individual function call. The Figure was taken from [66].

Regressogram [7, 66] can be viewed as a method that utilizes both regression and his-
togram techniques. Similar to the histogram, the variable space of 𝑋 is partitioned into
a fixed number of equal-width bins — hence why regressogram is also sometimes labeled as
binning — and then the bin value is estimated as the statistical function of all the (𝑥𝑖, 𝑦𝑖)
values that fall into the bin. Formally, if we assume the 𝑋 distribution is over [0, 1] and 𝑀
is the number of bins, then the partition can be expressed as:

𝐵1 =

[︂
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1

𝑀

)︂
, 𝐵2 =
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1

𝑀
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2
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𝑀 − 2

𝑀
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𝑀 − 1

𝑀

)︂
, 𝐵𝑀 =
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𝑀
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]︂
The estimation of 𝑚(𝑥) can then be computed as:

̂︀𝑚𝑀 (𝑥) =

∑︀𝑛
𝑖=1 𝑦𝑖𝐼(𝑥𝑖 ∈ 𝐵ℓ)∑︀𝑛
𝑖=1 𝐼(𝑥𝑖 ∈ 𝐵ℓ)

where 𝐼(𝑥𝑖 ∈ 𝐵ℓ) represents the membership of the (𝑥𝑖, 𝑦𝑖) value in the bin (as 1 or
0). Similar to the regression analysis, the coefficient of determination (𝑅2) may be used to
evaluate the goodness-of-fit of the model.

The number of bins used for partition affects the fitness of estimation, and it is thus
imperative to choose it appropriately. Various rules for choosing fixed bin sizes were pro-
posed (as mentioned in [66]), however, certain methods deal with this issue by recursively
splitting previous bins along the axis directions, such as regression trees [47]. The Figure 3.2
illustrates the difference between the regressogram and regression analysis models.
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3.4 Moving Average
When utilizing the dynamic analysis and instrumentation, the underlying data (e.g. mea-
sured execution time of functions) usually contain the so-called outliers, such as time records
notably impacted by a scheduler or garbage collector running in the background. These
outliers tend to skew the conclusions made about the data by statistical methods such as
the regressogram. In order to diminish the impact of such outliers, a moving average can
be used to smooth the data by averaging the deviations with other values in the proximity.

Generally, the moving average method [66, 80, 79] is a widely used indicator in the
area of technical analysis. It averages 𝑦 values in sub-intervals of 𝑥 that fall into the
data window — a fixed-width interval that continuously shifts from the beginning of 𝑥-axis
towards the more recent data. The data window can either be centered — in which case the
moving average accounts not only for the previous values, but also for the future ones (see
Equation 3.1) — or right-aligned where only previous values are utilized (see Equation 3.2).
In order to asses the goodness-of-fit, a coefficient of determination (𝑅2) can be used.

𝑀𝐴𝑐
𝑡(𝑛) =

𝑃𝑡−𝑘 + · · ·+ 𝑃𝑡 + · · ·+ 𝑃𝑡+𝑘

𝑛
(3.1)

𝑀𝐴𝑟
𝑡 (𝑛) =

𝑃𝑡 + 𝑃𝑡−1 + · · ·+ 𝑃𝑡−𝑛+1

𝑛
(3.2)

3.4.1 Moving Average Variants

Orthogonal to the centered and aligned classification, multitude of moving average variants
exist. In the following we list a brief overview of the selective variants:

Weighted Moving Average is a generic version of moving average where all the aver-
aged data points are associated with a weight, without imposing any restrictions or condi-
tions on the weight values distribution (such as done by the linear or exponential versions).
The right-aligned Weighted Moving Average can be expressed as follows:

𝑀𝐴𝑡(𝑘) =
𝑤𝑡𝑃𝑡 + 𝑤𝑡−1𝑃𝑡−1 + 𝑤𝑡−2𝑃𝑡−2 + · · ·+ 𝑤𝑡−𝑘𝑃𝑡−𝑘

𝑤𝑡 + 𝑤𝑡−1 + 𝑤𝑡−2 + · · ·+ 𝑤𝑡−𝑘
(3.3)

Simple Moving Average refers to the basic moving average in the Equation 3.1 or 3.2.
It is, in fact, an equally-weighted moving average (where 𝑤 = 1 for all data points) that
computes the arithmetic mean of 𝑛 data points.

Simple Moving Median is a modification of the Simple Moving Average that uses
a median (of the values in the data window) instead of the mean for smoothing the data.

Exponential Moving Average uses a decay factor 0 < 𝜆 < 1 to exponentially reduce
the weight of the points the more distant they are, as shown in Equation 3.4. This approach
guarantees that the recent data points have bigger impact on the new averaged point.

𝐸𝑀𝐴𝑡𝑘 =
𝑃𝑡 + 𝜆𝑃𝑡−1 + 𝜆2𝑃𝑡2 + · · ·+ 𝜆𝑘𝑃𝑡−𝑘

1 + 𝜆+ 𝜆2 + · · ·+ 𝜆𝑘
(3.4)

Apart from choosing the correct weighted model, the width of the data window has
a significant impact on the properties of the moving average method. By adjusting the
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Figure 3.3: An example of moving average variants (simple moving average (SMA), simple
moving median (SMM) and the exponential moving average (EMA)), and the regression
analysis quadratic model (QUAD). The 𝑥 (resp. 𝑦) axis represents the call order of the
function vim_regexec (resp. function runtime). Taken from [66].

width, a trade-off between the noise smoothing and the lag of the data trends detection
arises. The narrower the window, the less effective the smoothing (and the smaller the
detection lag) is and vice-versa. A comparison of three variations of the moving average
technique and the regression analysis is illustrated in Figure 3.3.

3.5 Kernel Regression
Kernel estimate [32, 66, 7, 69, 48, 49] of function 𝑚 at point 𝑥 can be described as a weighted
average of 𝑌 values in the close symmetric vicinity of 𝑥, denoted as [𝑥−ℎ, 𝑥+ℎ]. Intuitively,
this approach leverages the assumption of smoothness (as briefly mentioned in Section 3.1)
to approximate the regression function 𝑚(𝑥) — thus given the function is smooth, the points
in close proximity (specified by the smoothing bandwidth ℎ) influence the point 𝑥. Formally,
kernel estimates are expressed as1:

̂︀𝑚(𝑥;ℎ) =

𝑛−1∑︁
𝑖=0

𝑊𝐾
𝑖 (𝑥;ℎ)𝑦𝑖 (3.5)

where 𝑛 is the number of points in the kernel and 𝑊𝑖 are weights parameterized by the
point 𝑥, the bandwidth ℎ and the kernel function 𝐾. As with the other parametric and
nonparametric models implemented in Perun, the coefficient of determination (𝑅2) can be
used to evaluate how well the model fits the data.

Kernel Estimators. Generally, in order to perform a kernel regression, a specific esti-
mator and kernel function have to be chosen. The Nadaraya-Watson estimator (NW), for
example, is one of the simplest local polynomial estimators, expressed as:

𝑊𝐾
𝑖 (𝑥;ℎ) =

𝐾(𝑥−𝑥𝑖
ℎ )∑︀𝑛−1

ℓ=0 𝐾(𝑥−𝑥ℓ
ℎ )

̂︀𝑚𝑁𝑊 (𝑥;ℎ) =

∑︀𝑛−1
𝑖=0 𝑦𝑖𝐾(𝑥−𝑥𝑖

ℎ )∑︀𝑛−1
ℓ=0 𝐾(𝑥−𝑥ℓ

ℎ )
(3.6)

1The (𝑥;ℎ) notation expresses that the weights, and consequently also the kernel estimation, depend on
both the parameters 𝑥 and ℎ (as denoted e.g. by [32]).
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However, the Nadaraya-Watson estimator does not estimate well certain data distribu-
tions or models, such as perfectly linear data with no regression error. Such purely linear
data may (depending on the marginal distribution of 𝑥𝑖) lead to a nonlinear output due to
the fact that the NW estimator approximates the regression function by a local constant:
this explains why the NW is also called a local constant estimator. Thus, as the smooth-
ing increases (based on the bandwidth parameter), the estimator simplifies to a constant
(instead of a linear) function.

Kernel Functions. We have introduced kernel estimators without focusing much on the
kernel function 𝐾. Every kernel function 𝐾 : R→ R has to satisfy the following conditions:∫︁

𝐾(𝑥)𝑑𝑥 = 1 𝐾(𝑥) = 𝐾(−𝑥) (3.7)

The Box and Gaussian functions, for example, are amongst the most common ones:

𝐾𝐵(𝑥) =

{︃
1
2 if |𝑥| ≤ 1

0 otherwise
(3.8)

𝐾𝐺(𝑥) =
1√
2𝜋
𝑒−

1
2
𝑥2 (3.9)

However, in practice, the resulting estimates of different kernel functions differ only
slightly. On the other hand, choosing the correct bandwidth value ℎ has a much greater
impact on the quality of the approximation since the bandwidth controls the smoothing —
the larger the bandwidth, the smoother the estimates.

3.6 Comparison of Models
We conclude with short comparison of models implemented in the Perun framework (see
Section 4). The evaluation (taken from [66]) is conducted on two performance profiles, with
focus on the goodness-of-fit and computation time of each technique.

Each profile contains performance data for 25 different functions in the Vim text editor,
with an average of 773711 and 42038.55 records (for each function) in the first and the second
profile, respectively. In general, compared to the regression analysis, the nonparametric
models have achieved a superior accuracy / computation time ratio. Specifically, the results
demonstrate an improved accuracy along with a significant speedup, or a much more precise
results at the cost of a minor slowdown (as with e.g. the kernel regression). Table 3.1 shows
a summary of the achieved accuracy and elapsed time for each model. See [66] for more
details about the configuration of each methods, e.g. the number of regressogram bins,
width of moving average window, etc.

Table 3.1: A short summary of accuracy (𝑅2) and computation time (𝑡[𝑠]) values for each
model type. The emphasized values represent the minimum (red) and maximum (green)
values in both metrics. This table was taken from [66].

reg-analysis regressogram moving-avg kernel-reg

profile 𝑅2 𝑡[𝑠] 𝑅2 𝑡[𝑠] 𝑅2 𝑡[𝑠] 𝑅2 𝑡[𝑠]

#1 0.192 122.90 0.117 45.60 0.551 71.78 0.768 126.68
#2 0.222 11.01 0.415 3.86 0.572 5.28 0.775 76.71
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Chapter 4

Perun

We will build our optimization methods within Perun: an open source lightweight Perfor-
mance Version System for continuous performance monitoring [20]. First, we provide a brief
overview of the whole Perun workflow and architecture, along with the description of the
internal processes that we aim to optimize. Later, we describes the Tracer data collector in
more details since Tracer is heavily utilized in this work. Last but not least, related work
and projects are discussed, evaluated and compared to Perun.

4.1 Overview
Perun is as a wrapper over Version Control Systems (VCS), such as Git, and keeps track
of performance profiles for different project versions, and it also provides a tool suite for
generating, processing and interpreting the performance profiles. Having access to both the
project history and performance profiles, Perun attempts to continuously monitor the state
of the project from the performance point of view and detect any potential performance
changes the moment they appear: it measures and evaluates the performance metric every
time a new project version is published (e.g. a commit or pull-request), and subsequently
comparing the obtained results with the performance profiles assigned to the previous (sta-
ble) versions. Figure 4.1 illustrates the intended use-case model of Perun.

Collectors

Postprocessing

Visualizations

(time, memory,   

(regression analysis, filters,   

(bars, scatter plots, heat maps,   

Server

Developer 2Developer 1

(.git) (.perun)(.git) (.perun) (.git) (.perun)(.git) (.perun)

(.git) (.perun)(.git) (.perun)

Perun

Suite

git init --bare

Figure 4.1: An illustration of the Perun framework coexisting with a Version Control
System (VCS) [20], such as Git, during the project development.
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Compared to the naïve approach of storing the performance profiles directly in DB or
VCS, Perun offers an advanced performance management with the following advantages [21]:

Context. Perun stores the profiles alongside the VCS and maps them to a specific project
version, so the context about the underlying codebase is preserved in performance profiles.
Notably, the context can aid the developer in pinpointing the source of the discovered
performance changes or help the collectors, with the optimized selection of the code locations
to measure, based on the source code differences between various versions.

Automation. Instead of having to profile manually whenever a new version is released,
Perun can automate the the whole process by the so-called hooks in the VCS and the
concept of jobs: jobs are the sequence of Perun commands, while hooks are triggers of the
defined jobs when, e.g. new project version being pushed. The automation model and file
formats are inspired by the continuous integration (CI) tools, e.g. Travis CI 1.

Genericity. One of the core ideas of Perun is to be easily extensible, either by new data
collectors, postprocessors or visualisations. Enhancing Perun with new methods is rather
straightforward process with minimum requirements or restrictions. Also, Perun employs
an unified format (based on a JSON notation) to store the performance data, so that every
module can further process or interpret the profile. Furthermore, since every technique is
implemented in a separate invocable module, Perun leverages this design by treating the
modules as basic building blocks for the specification of automated jobs.

Easy-to-use. Since Perun is intended for deployment alongside VCS, the goal was to
design a similar Command Line Interface (CLI) as used by the Git system — consisting
of commands such as add, status, log, init, etc. — and thus giving the users a sense of
familiarity when using Perun.

4.1.1 Workflow

The main Perun workflow is a series of steps that are executed whenever, e.g. a new
version of a tracked project is created. The description of the workflow is based on our
earlier work [55]. Figure 4.2 illustrates the workflow of the main Perun feature: automated
detection of performance changes.

The workflow process can be described as follows:

1. User initializes a new Perun repository associated with certain project managed by
a VCS — in this example, we assume the Git system is used. Furthermore, the user
configures the Perun repository and specifies the desired collection, postprocessing
and detection methods that should be used to analyze new project versions.

2. New changes to the source code are made, the developer checks them out in the Git
repository and creates a new commit.

3. By creating a commit, new version of the project appears and triggers the cascade
of tasks specified by the jobs. First of all, raw performance data are obtained using
one of the available collectors, such as the Trace collector that measures the time

1https://travis-ci.com/
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Figure 4.2: A graphical depiction of the Perun workflow [20]. Whenever new project
version appears, Perun runs the cascade of tasks (also known as job) comprising of methods
for performance data collection, raw data postprocessing and degradation detection with
respect to the previous project version.

consumption of particular functions or code blocks. The raw data are stored as a
profile in the Perun repository.

4. Since the raw data from collectors are not suitable for direct interpretation (even
though it can be done for small projects), postprocessing techniques are used in or-
der to transform the data or identify potential relations among them. Using the
Regression Analysis, for example, we can build the performance models of measured
functions — in terms of the model category (e.g. linear, quadratic, exponential) and
its parameters. The results of the postprocessing methods are stored in the previ-
ously created performance profile, often called the target profile in the context of
performance change detection.

5. The previous (stable) version of the project is determined and associated profiles
(so-called baseline profiles) are retrieved from the repository. Such baseline profiles
characterize the performance status of the previous project version.

6. The baseline and target profiles are paired with respect to their configuration and
parameters (i.e. only profiles using the same executable file, parameters, methods,
etc. are matched). For each matching pair, a detection of degradation is performed
with the help of methods such as Integral Method or Local Stats (introduced in [66]).

7. The degradation detection methods provide the user with reports of the discovered
potential performance changes. Each performance change is characterized by the
severity, location and confidence parameters. While location helps to identify the
source of the change, severity and confidence reflect the seriousness and the degree of
certainty regarding the estimate, respectively.

4.1.2 Architecture

The architecture of Perun [20, 21, 66], illustrated in Figure 4.3, consists of four main
components: logic, data, view and check. Apart from those core components, a lot of
smaller helper or utility components exist, such as vcs, templates, workload, etc. However,
in this section, we focus on a concise description of the four main components. Further, we
will identify and discuss the most suitable opportunities for optimizations. schematically
illustrates the described architecture.
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Figure 4.3: A simplified architecture schema of the Perun featuring four main compo-
nents (logic, data, view and check) as well as the VCS module: interface to Git, SVN and
similar systems. The Data layer is a core component that handles operations related to the
generation and manipulation of profiles. The profiles are further used by the postprocess,
view and check components to analyze, visualize or compare the raw performance data.

Logic handles most of the tasks related to the automation (e.g. jobs or runners controlling
the invocation of the requested methods), CLI interactions, repository configuration, etc.
Logic also encapsulates collectors and postprocessors responsible for measuring and further
processing of the raw performance data, respectively. Notable collectors are:

• Memory collector gathers records of memory allocations, and overall heap memory
usage, in C and C++ programs with various associated attributes. The collector lever-
ages the libunwind2 and custom libmalloc libraries to perform the data collection.

• Complexity collector exploits the compiler-aided instrumentation of GCC (see Sec-
tion 2.3.2) and a custom shared library to measure the time consumption and approx-
imate structure size of functions operating on data structures within the executable.

• Trace collector, will be described in the following Section.

• Bounds collector focuses on estimating (and collecting) the integer bounds and heap-
manipulating loops in C language (or more precisely, its subset). The collector is
simply a wrapper over the Loopus tool [63].

Moreover, some of the commonly utilized postprocessors are:

• Regression Analysis attempts to fit the data with various regression functions and
identify the best fit with respect to square error. The regression method requires
dataset with independent and dependent variables.

2https://www.nongnu.org/libunwind/
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• Regressogram, Moving Average and Kernel Regression which were already introduced
in the Chapter 3.

Data component can be seen as the core of the Perun, since its contains interface for
performance profiles, with which every other architecture component interacts. Namely,
the data layer handles the profile generation and the resource queries.

View layer provides graphical interpretation of the collected data and models (obtained
by postprocessors or checkers). Some of the currently supported view methods are:

• Scatter Plot uses two dimensional grid to display data as points and is best suited for
outputting trace or complexity results.

• Bars Plot displays the profile resources in form of vertical bars which can be either
grouped next to, or stacked on top of each other. Bars support large number of
different resource types and are easily customized.

• Heap Map is best utilized in conjunction with memory collector output. It provides
a visualization of the memory address map that keeps track of individual address
locations, their usage, their allocated objects, or how often the address is utilized.

Check contains methods for the detection of performance changes which were mostly
introduced in [66, 65]. Different methods are employed based on the particular resource
type, since some methods work only on raw data, performance models or other specific data
types. Some notable detection methods are:

• Average Amount Threshold, a simple heuristic, that groups the profile resources based
on the unique identifier (uid), computes the averages and compares the values for
both baseline and target profiles. Potential change is classified as optimization or
degradation based on the fixed thresholds.

• Integral Method uses parametric or nonparametric performance models to detect per-
formance changes. In particular, it builds on the assumption that change occurs if the
area below a specific performance model is different in the new target profile — thus
the areas are computed using an integral and then the respective results are compared.

• Local Statistics divides the performance models into sub-intervals that are analyzed
individually. The comparison is done using a collection of statistical metrics, such as
integral, average, median, sum, etc. This approach allows for more precise identifica-
tion of the potential degradation source.

4.2 Tracer
Tracer (also called Trace collector) — a successor of Complexity collector [52] — was first
introduced in [53] and further enhanced in [54]. Tracer is built on top of the SystemTap
framework (see Section 2.5.4) that provides the means to dynamically instrument kernel or
executable files. However, Tracer is not just a wrapper over the SystemTap as it provides
advanced techniques for full automation of performance data collection. The focus of Tracer
is on measuring the time consumption of functions and custom code blocks (defined by the
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static userspace probes), while also keeping track of the call hierarchy so that a partial trace
of the whole run is obtained. Table 4.1 compares complexity and trace collector.

Table 4.1: Comparison of requirements and features of our old prototype Complexity
collector and Tracer. Although Tracer requires kernel dbgsym version, it is not reliant
on having access to the source code or compilation process. Also, unlike the complexity
collector, Tracer supports dynamic instrumentation and full automation of the collection.

Complexity Trace
Requires access to source code 3 7

Requires project re-compilation 3 7

Requires dbgsym kernel version 7 3

Collects associated data size 3 7

Supports dynamic instrumentation 7 3

Supports USDT instrumentation 7 3

Fully automated collection process 7 3

Tracer works roughly in the following steps:

1. User invokes the Trace collector through the Perun interface and specifies the col-
lection parameters: the target executable, code locations to measure, sampling, etc.
The code locations (functions and USDT) can either be specified manually, identi-
fied and extracted automatically by a selected collection strategy, or user may choose
a combination of both the automatic and manual approaches.

2. Tracer extracts the instrumentation locations based on the selected strategy (if nec-
essary), builds the configuration object and assembles the SystemTap script file. The
script contains handlers (blocks of code that will be executed) for every instrumented
function or tracepoint.

3. In the next step, the script is compiled into a kernel module, SystemTap is initialized
and launched as a background process that collects the performance data w.r.t script.

4. The executable file (either binary file or a script that calls the target executable) is
invoked and being traced until the process terminates, or a timeout is reached. The
collection data are obtained through kernel buffers and redirected to an output file.

5. Tracer transforms the raw data output from SystemTap into Perun resource records
which are then stored in a profile. Before terminating the collection process, the
Tracer performs a cleanup of all the used resources, that might have not been properly
disposed — such as SystemTap processes, kernel modules, temporary files etc.

The already mentioned collection strategies are a key mechanism developed to enhance
the automation of the Tracer. Every strategy defines what functions are to be instrumented
in order to gather their performance data, without the need to specify them manually by
the user. First, the list of available functions is extracted directly from the binary file using
the linux utility nm3. Next, the function list is filtered to match the selected strategy and,
optionally, the sampling is applied. Apart from the function symbols, userspace tracepoints
are also automatically extracted using a builtin feature within the SystemTap framework.
Figure 4.4 graphically illustrates, in a simplified way, the extraction process done by the
various collection strategies.

3http://man7.org/linux/man-pages/man1/nm.1p.html
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Currently, the following collection strategies are supported:

• Custom strategy relies solely on the user manual specification of function symbols
without leveraging any automatic extraction. However, tracepoints can still be ex-
tracted automatically, if requested.

+ Suitable for profiling of a small sub-
set of functions, e.g. the ones most
likely to have a performance defect.

- Unknown or subtle performance
bugs are likely not to be discovered.

- Tedious.

• All is a strategy that instruments all of the functions within the executable file with
no filtering whatsoever. This strategy is also meant to instrument relevant functions
from standard and user libraries, however, this feature has not yet been implemented.
Collecting the performance data of all the functions can prove necessary when a covert
performance bug has emerged. Nevertheless, the considerably increased overhead and
profile size are the major drawbacks of this strategy.

+ Collecting performance data of all
functions can prove necessary in case
of covert performance bug.

- A considerable increase in the over-
head and resulting profile size.

• Userspace strategy filters function symbols that have not been defined by the user,
such as various helper functions created by compilers etc. Also, user shared libraries
should be instrumented similarly to the all strategy — a feature not yet available.

+ A sufficient strategy for detecting
most of the performance bugs.

+ The overhead and profile size are not
as substantial as in the case of the
all strategy.

- Heavyweight (in terms of overhead
and profile size) for large projects.

- Performance degradations associ-
ated with usage of standard and sys-
tem libraries may not be detected.

• Sampled all and userspace strategies apply sampling to the instrumented functions.
This ensures that the instrumentation code is not executed every time a corresponding
event happens and thus sampled functions reduce the amount of raw data.

+ Considerably reduces the profile size.
+ Collects enough performance data

for further processing.

- Does not reduce the time overhead
sufficiently.

4.3 Related Work
We conclude with a list of selected related works that address the same issues of profiling,
performance analysis and performance data collection as Perun and Tracer. We concern
ourselves only with projects that leverage dynamic instrumentation — with none or severely
restricted access to the compilation process and its modification — and are available for
Linux operating system.
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Figure 4.4: An overview of the Tracer strategies [54]. The custom strategy only instru-
ments locations specified by the user; the all and userspace attempt to instrument all, or
just userspace functions, respectively. Sampled methods include global sampling of probes.

Valgrind [46, 73] is a widely popular tool suite for, e.g., checking memory usage, cache
and heap profiling, or thread debugging. The Callgrind tool focuses on profiling function
calls and constructing CGs, and so has similar purpose as the Tracer. However, Callgrind
is known for its substantial overhead due to its interconnection with the Cachegrind, which
greatly hinders its usability in measuring the performance in terms of elapsed time.

OProfile [50] is a profiling tool based on the sampling principle: it periodically examines
of various CPU registers, such as the Program Counter (PC), in order to gather details about
the hierarchy of running programs and their functions. Furthermore, OProfile also leverages
HW counters to access useful performance metrics (see Section 2.5.3). Even though the
sampling approach is undoubtedly light-weighted, the precision can be limiting and the
amount of obtained data is not sufficient to construct any performance models.

PerfRepo [57] is a repository for performance results. It aims to capture and archive
results of performance tests in order to automatically compare performance of subsequent
project versions — similar to how Perun works. However, unlike Perun, the PerfRepo does
not provide any specific performance tool suite. Moreover, it is designed as a web application
and it is thus not possible to compare and archive the performance results without utilizing
the server side code. As far as we know, it also does not provide deep VCS integration and
the automation is instead performed through the properly configured client side. Still, it is
a well-rounded tool for managing performance results generated by other tools.

Other similar tools and frameworks — e.g. the linux tracing family (strace, ftrace, ltrace),
DTrace, prof and others — were already discussed. Multitude of commercial tools such
as Intel V-Tune Profiler4, AMD 𝜇Prof 5, Arm MAP6 or Oracle Performance Analyzer7

exist. These tools are generally robust, versatile, packed with features and support broad
range of possible use-cases. However, apart from being commercial, these tools usually
require corresponding HW (e.g. Intel, AMD, Arm processors) or SW (e.g. Oracle IDE that
integrates the profiling tool) to either work, or at least unlock its full potential.

To the best of our knowledge, no profiling framework or tool currently offers deep inte-
gration with version control systems as well as an extensible tool suite to collect, postprocess
and visualize the performance data. This makes Perun a unique framework for continu-
ous performance monitoring across different project versions in order to inform the user
whenever a new severe performance degradation emerges.

4https://software.intel.com/vtune
5https://developer.amd.com/amd-uprof/
6https://www.arm.com/products/development-tools/server-and-hpc/forge/map
7https://docs.oracle.com/cd/E77782_01/html/E77798/index.html
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Chapter 5

Analysis of Requirements

In the following, we list the selected metrics we will use for the evaluation, the optimization
criteria we will focus on in our methods, and the key functional and non-functional require-
ments we will satisfy. These requirements have to be taken into account when designing the
individual optimization methods, however, note that certain requirements may not be fully
satisfied — and some may even contradict others — by some of the our proposed techniques.

5.1 Evaluation Metrics
While each individual method focuses on certain primary optimization criteria (with the
goal of minimizing or maximizing it), the actual impact of methods on the performance
analysis can be measured from multiple perspectives, known as the metrics. By selecting
a suitable set of metrics, we can precisely capture a wide array of properties for each
method, or even leverage a relevant subset of metrics to quantify the optimization criteria.
In particular, we propose to assess each method individually based on the following metrics:

I) M_PT: Profiling Time [s] represents the duration of all profiling phases (i.e. in-
cluding the M_CPT, M_CRT, M_OO and M_ORE times), i.e. the time spent
by running one whole Perun job. Naturally, speeding up the entire profiling process
makes measuring large-scale projects significantly more user-friendly and greatly re-
duces the time requirements for any deep Perun analysis of project repository (e.g.,
when examining the whole project history for possible performance degradations).

II) M_CPT: Collection Phase Time [s] represents the duration of the collect phase
(e.g., in the Trace collector) only. In particular, we measure the time spent by at-
taching the instrumentation, running the profiled program and collecting the actual
performance data. Note, that we exclude the setup or cleanup phase as well as
some other Perun-related operations. In combination with the M_CRT, we can use
this metric to observe the impact of various preparatory, supplementary or auxiliary
collect operations, most notably the attaching and detaching of instrumentation.

III) M_PRT: Program Run Time [s] represents the duration of the profiled program
run1. We strive to achieve program run time that is closer to the actual run time
(without any instrumentation), so we can reduce the overhead of the profiling and
obtain results that are closer to the real program performance.

1Note that this run is with the possible introduced instrumentation overhead.
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IV) M_RDV: Raw Data Volume [MB] comprises the amount of raw performance
data collected by underlying collection modules, before the data are transformed into
the actual performance profile. Minimizing the volume of raw data speeds up the
profile transformation process and, most importantly, prevents the excessive loss of
performance data due to the data channels being full (both the SystemTap and eBPF
internally utilize some form of kernel buffers that drop data records when full).

V) M_PS: Profile Size [MB] comprises the disk space needed to store the resulting
Perun profile. Keeping the profiles compact is necessary since they are being stored
in the internal Perun directory for future use (as opposed to the raw data, which
are usually discarded), and smaller profiles can, naturally, be further processed much
faster.

VI) M_OO: Optimization Overhead [s] represents the time overhead of utilizing the
individual optimizations and all their associated operations, such as approximating
the parameters or extracting the resources. Obviously, this overhead should not ex-
ceed the time saved by utilizing the optimizations. By minimizing the overhead, we
improve the gain of optimizations, and, hence, improve the profiling speed.

VII) M_ORE: Optimization Resources Extraction [s] represents the duration of
preparing the optimization resources (such as call graph or statistics of previous pro-
filings) required by the individual optimization methods. Distinguishing the time re-
quired for the resource extraction from the overall optimization overhead (M_OO)
offers a more detailed view of where the optimization code spends more time. Also, in
many cases these resources can be precomputed, retrieved from internal Perun cache,
or shared by several optimizations, so this would induce a one-time overhead.

VIII) M_PL: Probe Locations [probes count] represents the number of instrumenta-
tion sites within the SUT, i.e., the number of defined and attached probes, which
can change, e.g. in case of various probe filtering techniques. Reducing the extent
of instrumentation and targeting only the meaningful code locations is the primary
approach for achieving profiling speedup (both in the form of collection and probe
attaching times) and data volume reduction. Furthermore, it is imperative to balance
the reduction of instrumentation points rather than minimize it, since it could lead
to not profiling code locations that could still contain potential performance changes.

IX) M_PLR: Probe Locations Reached [probes count] represents the number of
unique instrumentation points actually triggered during the profiling, since not all of
the instrumented locations (as tracked by the M_PL) are necessarily reached during
the specific profiling with concrete parameters and input workloads. Attaching and
detaching excessive number of probes tends to be a time expensive operation (as well
as useless, if majority of the attached probes are never reached). Hence minimizing
the 𝑀_𝑃𝐿−𝑀_𝑃𝐿𝑅 difference is imperative in speeding up the profiling.

X) M_HC: Hotspot Coverage [time coverage %] is the inverse fraction of the total
run time spent in the profiled functions that are in the bottom-level of the callgraph
compared to the main function. We define the set of bottom-level functions as:

⊥ = {𝑓 | 𝑓 ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ∧ ¬∃𝑔 ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 : 𝑔 ̸= 𝑓 ∧ 𝑓 ⊆ 𝑔}

where 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 is the set of profiled functions and ⊆ is a subsumption relation
𝑓 ⊆ 𝑔 ⇔ 𝑓𝑑𝑒𝑝𝑡ℎ < 𝑔𝑑𝑒𝑝𝑡ℎ∧𝑔 ∈ 𝑓𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒, where 𝑑𝑒𝑝𝑡ℎ represents the depth of a function
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within the call graph hierarchy (where 0 refers to the root level) and 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 is a set
of functions reachable from 𝑓 . The intuition behind the subsumption is that provided
that 𝑔 reaches the function 𝑓 and has a higher-level, then the call duration of 𝑓 may be
included in the call duration of 𝑔, thus 𝑔 overapproximates the performance coverage
of 𝑓 . Note, that Tracer currently measures only inclusive time, so we cannot properly
compute the hotspot coverage for recursive functions, and hence we omit them from
the bottom-level set during the raw data parsing. High hotspot coverage indicates
that we can quite precisely pinpoint the location of performance bottlenecks. On the
other hand, low coverage indicates that lower level functions excluded from profiling
are likely to contain the performance hotspot, which we cannot precisely pinpoint.

XI) M_HCD: Hotspot Coverage Depth [average function depth] expresses the av-
erage call graph depth of all the ⊥ functions. The average depth value reasonably
estimates how thorough the hotspot coverage is: the deeper the depth, the more
precise the coverage of the actual call graph nodes preceding the ⊥ functions.

XII) M_HCP: Hotspot Coverage Probes [probes count] is the number of ⊥ functions,
which roughly assess how well the M_HC covers different subgraphs of the call graph.

XIII) M_TLC: Top Level Coverage [time coverage %] refers to the fraction of total run
time spent in top-level functions compared to the main function itself. We define
the top-level functions analogously to the bottom-level functions:

⊤ = {𝑓 | 𝑓 ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑′ ∧ ¬∃𝑓 ′ ∈ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 : 𝑓 ′ ̸= 𝑓 ∧ 𝑓 ′ ⊆ 𝑓}

where ⊆ is defined the same way as in M_HC. Note, that we limit ourselves to the set
of profiled functions 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑′ that excludes those, which have lower or equal 𝑑𝑒𝑝𝑡ℎ
value than functions in the first call graph branching (e.g., the main functions and
possibly other directly wrapped functions)2. Using this coverage metric, we obtain an
estimate of how time-intensive are the computations directly within the main function
or its wrapped functions (which we cannot measure in a more granular way as of now)
as opposed to the rest of the functions. The higher the coverage is, the more precise
our subsequent analysis (e.g., targeting certain segments of the program) will be, as
we will not miss any important hotspot in the code. Figure 5.1 demonstrates the
difference between the top level and hotspot coverage metrics.

XIV) M_TLCP: Top Level Coverage Probes [probes count] counts the number of ⊤
functions. The greater the amount of function probes, the more fine-grained top-level
overview of the performance distribution is achieved.

XV) M_FC: Function Complexity [model categories number] counts the number of
different complexity models (see Section 3) as obtained by, e.g., regression analysis.
Typically, counting the occurrences of model differences (after applying an optimiza-
tion method) is necessary to evaluate the potential data skew caused by the optimized
profiling and for determining the actual impact of optimizations (since removing con-
stant function has quite different impact than removing e.g. non-elementary function).

2Since otherwise, we would always obtain only one ⊤ function: the main function.
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Figure 5.1: An illustration of the Top Level Coverage and Hotspot Coverage metrics,
and their different, yet complementary, approach to quantifying the profiling coverage.
While TLC uses top (⊤) functions to assess the portion of the elapsed time that is covered
by top-level overview functions, HC identifies bottom (⊥) functions that can be leveraged
to express the portion of total elapsed time spent in actually profiled functions, so that
possible performance hotspots can be precisely localized.

5.2 Optimization Criteria
Each optimization technique minimizes or maximizes a particular optimization criteria.
Hence, we first select those that we will focus on in our optimizations. Naturally, each
technique generally affects multiple parameters at once — we, however, usually pinpoint
one (or a few) dominant criteria for each method.

I) OC_T: Time consumption of Perun profiling is one of our biggest concerns when
analyzing large-scale projects, which includes both the instrumentation overhead and
the total profiling time (including performance modelling, etc.). Metrics associated
with the time criterion are: M_PT, M_CPT, M_CRT, M_OO and M_ORE.

II) OC_DV: Data Volume issues often manifest themselves when too many collection
points are monitored (e.g., instrumented or probed) during the collection process,
generating an excessive amount of data (up to GBs of raw data). However, similar
problems can also occur when the program runs for too long even though the set
of monitored locations is not particularly large3. This particular criterion can be
evaluated using the M_RDV and M_PS metrics.

III) OC_CP: Collection Points are the amount of monitored code locations within the
profiled program (regardless of the instrumentation, injection or attachment details
for specific collection methods). The amount of collection points directly affects the
profiling time as well as the data volume. Generally, we distinguish between the two
following cases that differ in the severity of the imposed overhead:

• Instrumented locations generate overhead during the instrumentation (resp.
cleanup) performed before (resp. after) the profiled program is run. Note, how-
ever, that these locations may or may not be reached during the actual profiling.

3Note, that the compact Profile format of Perun v.0.17 led to considerable reduction already.
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• Actually reached collection points (𝑟𝑒𝑎𝑐ℎ𝑒𝑑 ⊆ 𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡𝑒𝑑) cause additional
overhead during the program run by generating profiling data, and thus nega-
tively affecting the precision of the performance data collection.

The M_PL, M_PLR, M_TLC and M_HC can be used to assess this criterion.

IV) OC_F: Freshness relates to how recently the functions were modified. We argue,
that this criterion is, nowadays, the most critical, as the more fresh are the changes
the more likely will the developers fix the underlying performance issues. In this
work, however, we limit ourselves only to an approximation of the freshness — i.e.,
profile functions that are classified as changed since the last profiled project version.
Optimizing the freshness greatly improves the profiling by precisely pinpointing only
the relevant collection points. There are no metrics we can use for this criterion.

5.3 Functional Requirements
We believe, that our novel optimizations for performance analysis should aim at the wide
developer community and also should be applicable to other performance suites. Hence, we
propose they should comply with the following functional requirements:

1) FR_OC (Optimize at least one Optimization Criteria): each method must
properly optimize at least one optimization criterion. Note, however, that achieving
optimization of all the criteria simultaneously by a single method is highly unlikely.

2) FR_O (Orthogonality): every method must be implemented in a manner that
allows users to utilize several different methods together. By leveraging various tech-
niques at the same time, it should be possible to optimize multiple criteria at once.

3) FR_A (Automation): the selected methods must be appliable automatically (e.g.
as a part of the Perun workflow), without the need for manual invocation from the
user. Moreover, the basic usage of methods should require minimum of user config-
uration and they should offer as many default parameters as possible, which should
be reasonably inferred, e.g., based on the project size and specifics.

4) FR_MS (Method Separation): the usage of certain optimization must not in any
way limit the usage of another one, i.e, each method must be available as a standalone
feature without the need to enable or disable other methods. However, note, we do
not prohibit the methods from utilizing results from other selected methods.

5) FR_PI (Position Independence): each method has to be designed in an order-
independent manner w.r.t combination of multiple methods. Note, however, that
different ordering of methods within the optimization sequence can produce diverse
results, since, generally, the combination of optimizations is not commutative.

6) FR_PP (Predefined Pipelines): the optimization module has to support at least
two predefined configurations for automated optimization, the so called pipelines,
including the selection of optimization methods to apply as well as their configuration.

7) FR_P (Implemented in Perun): the methods must be integrated into the Perun
framework, so it is ensured the methods are easily leveraged by other Perun modules
without the need for external calls to other programs.
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8) FR_SM (Utilize supported analysis methods): the methods should be primar-
ily based on the techniques described in the Chapter 2 or those already supported
by Perun. Furthermore, the proposed techniques should be supported both by the
SystemTap (see Section 2.5.4) and eBPF (more details in Section 2.5.5) frameworks.

5.4 Non-functional Requirements
The previous set of requirements focused on the intended behavior of the methods. However,
if we want to apply our methods successfully in practice, we believe we should also take
into account certain non-functional requirements, in particular:

A) NR_G (Generic implementation): even though the optimization methods will
be mostly focused on the Trace collector, the implementation should be sufficiently
generic to support any other data collectors (satisfying certain interfaces).

B) NR_AIL (Acceptable information loss): the information loss (expressed, e.g. as
the precision of the performance models), caused by the reduction of profiles, should
not skew the results of subsequent postprocessing beyond a reasonable threshold.
Moreover, no optimization should lead to a loss of detectable performance change.

C) NR_S (Scalability): the optimization architecture and methods have to be de-
signed and implemented such that Perun’s profiling will scale well even for medium
to large projects up to hundreds of thousands of Lines of Code (LoC).

D) NR_M (Maintainability): all of the methods should be properly tested and pass
the code style checks utilized by the Perun Pull Request toolchain (see [20] for details).
Furthermore, the implementation must be well documented, the resulting code should
be well readable and easily extendable by other developers.

E) NR_DL (Dependencies and Licensing): even though the usage of third-party
libraries, tools or frameworks for certain tasks can be expected, the number of intro-
duced dependencies must be appropriate to the task being solved. The licensing of
the external tools should be compatible with the Perun license.
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Chapter 6

Extending Perun Architecture

The latest version of Perun (version 0.18.3), unfortunately, does not meet all of the re-
quirements from Chapter 5, hence, we propose to extend the Perun as follows. First, we
extend the architecture of Tracer to support multiple underlying instrumentation and trac-
ing frameworks: using the so called engines which will allow us to utilize eBPF framework.
Second, we enhance the Perun collection process with new optimization layer that will man-
age optimizations and their collections (the so called pipelines; see Sec. 6.2.1). The proposed
layer will be irrespective of the collector specifics as long as the common interface is imple-
mented (this will allow us to easily leverage the optimizations in any future collectors). At
last, we implement several generic modules in the Perun core, such as the stats module for
storing statistics, metrics and various proprietary data related to a specific project version
or performance profile (this will allow us to e.g., utilize statistics from previous profilings
to fine-tune the probes configuration, such as sampling, in future profilings).

6.1 Extending Tracer with Engines
The Tracer 0.18 (see Section 4.2) uses the SystemTap framework to inject probes into the
profiled program. But, even though SystemTap is quite versatile, it lacks the means to
dynamically enable or disable probes during the profiling as the SUT is being run. Based
on the analysis of the state-of-the-art dynamic instrumentation practices and the possible
optimization approaches, we noticed that the collection could be enhanced if we exploit
additional framework, namely the eBPF, which does support probe runtime manipulation.

Compared to the SystemTap, the eBPF is based on a more dynamic approach (using
lightweight in-kernel virtual machine as opposed to kernel modules utilized by SystemTap),
and so it can provide interface for dynamic probe manipulation during the runtime, e.g., we
could deactivate probes with too much overhead on the fly. Thus, we propose to implement
a new data collector based on the eBPF as an underlying instrumentation framework, and
on the BCC (BPF Compiler Collection) [3]: one of the currently developed BPF frontends
with bindings for the Python programming language.

We noticed both SystemTap-based and eBPF-based collectors can share a considerable
portion of common functionality. Hence, we decided to redesign the Tracer architecture
to support multiple underlying instrumentation frameworks (such as SystemTap or eBPF)
using the so called engines. Figure 6.1 compares the original Tracer architecture (based
solely on the SystemTap framework) and the proposed architecture that is independent of
the instrumentation and collection specifics.
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A note on the eBPF probing mechanism:

When using BCC, the process of loading the BCC program (containing the definition
of probe handlers) is separated from the process of attaching the probes through the
API. Thanks to this design, probes can be attached or detached on the go considering
the selected handlers are present in the BCC program — as opposed to the SystemTap
approach where the loaded kernel module (built from the script with probe handlers
definition) implicitly determines the used probes and attaches them automatically.
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Figure 6.1: A schematic overview of (a) the old Tracer architecture (v0.18) with hard-
coded SystemTap usage, and (b) the proposed architecture (expected as version 0.19) that
abstracts away supported instrumentation frameworks. The collection process itself is di-
vided into four separate stages: before, collect, after and teardown. Each light grey
box represents an action, while the arrows represent callback of functions.

Using such design significantly improves the extensibility of Tracer: other instrumen-
tation frameworks can now be easily incorporated into the Tracer in the future. However,
each engine must implement the so called Common Engines Interface that unifies commu-
nication with concrete engines. The interface is defined as the following set of functions,
where **kwargs refer to the Python dictionary1 and → represents the returned type. We
briefly illustrate each function and how it is handled by (1) SystemTap, and (2) eBPF.

1For more details, see the Python glossary: https://docs.python.org/3/glossary.html
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• check_dependencies(): checks that all of the engine requirements are satisfied and
all of the dependencies are available, e.g. (1) stap or rmmod external commands,
(2) eBPF has no additional dependencies apart from the Python package. In case
anything is missing, the user should be notified of any issues in advance.

• available_usdt(**kwargs)→ list: extracts the USDT probes (see Sec. 2.3.1) from
the SUT in a framework-specific manner, e.g., (1) SystemTap invokes external com-
mand to extract the probes and (2) eBPF engine utilizes the BCC library interface.

• assemble_collect_program(**kwargs): assembles the collection program w.r.t the
specification of profiled probes. Both (1) SystemTap and (2) eBPF engines attempt to
assemble the collection program using the language-specific primitives of each frame-
work. Refer to Listings A.1 and A.2 for example programs for both engines.

• engine_collect(**kwargs): runs the actual data collection process. This usually
involves running a designated process with elevated privileges — as (1) an external
stap command, or (2) an internal proprietary Perun module — that injects the probes,
captures the probe events, and runs the profiled executable itself.

• transform(**kwargs) → generator: transforms the engine-specific raw events to
the unified Perun resources. Listings A.3 and A.4 show examples of the (1) SystemTap
and (2) eBPF raw data format; the actual transformation is straightforward.

• cleanup(**kwargs): frees the used set of resources that have to be properly cleaned-
up. Failing to do so can lead to serious issues, or even performance data corruption.
An example of such resources are: opened files (e.g., raw data file or command output
capture file), running processes and child processes, or specific proprietary locks, e.g.,
for mutual exclusion of multiple running SystemTap instances.

6.1.1 The eBPF Collection Engine

We will now provide a brief overview of the newly implemented eBPF engine. The key
difference between the SystemTap and BCC is that while SystemTap is available solely
as a standalone system tool (invoked through the stap command), the BCC comes with
bindings for Python language. Launching an external stap process has somewhat limited
means to control the execution, in contrast, the eBPF engine can leverage the binding to
configure and control the data collection directly through the Python API. Specifically,
thanks to the direct Python binding, the eBPF virtual machine can be fully operated using
only the library interface, thus making the engine more robust, maintainable or extendable,
and avoiding numerous pitfalls associated with manipulating an external system process
(such as polling the process status or terminating the elevated-privileges process from an
unprivileged Perun process). Figure 6.2 illustrates the eBPF engine that operates as follows:

1. The BCC program is assembled (in a subset of the C language) through the API
function assemble_collect_program(**kwargs) resulting into definitions of probe
handlers (where USDT probes are obtained by the available_usdt(**kwargs) func-
tion) for every injected probe. Specifically, every profiled function has its own pair of
probes (i.e. the uprobes and uretprobes) and handlers corresponding to the entry
and exit function locations. Whenever the entry probe is hit, a timestamp is stored
in a BPF_ARRAY kernel data structure at a position matching the function ID. When
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the exit probe is triggered, the handler attempts to retrieve the previously stored
timestamp, computes the elapsed time and generates a perf_event filled with raw
data (see Listings A.2 and A.4 for detailed description). Note, that this process may
be slightly altered by sampling when only on every 𝑛-th probe hit the timestamp is
stored, thus reducing the number of generated events and the raw data volume.

2. The runtime configuration file is built as part of the engine_collect(**kwargs)
function. The runtime configuration is loaded by the spawned eBPF instrumentation
process and contains parameters relevant to the instrumentation, such as the profiled
executable file, collection timeout, probes that should be attached etc. Listings A.6
shows an example of runtime configuration with more elaborate description.

3. The Tracer spawns a new process with elevated privileges that loads the runtime
configuration and attaches the probes (as part of the engine_collect(**kwargs)
function), because performing the eBPF instrumentation requires superuser privileges
and Perun is not expected to be run in the superuser mode.

4. After the probes are attached, Tracer invokes the profiled command (through the
engine_collect(**kwargs) function) as a separate process, polls the event buffer
and stores the performance data into an output file (see Listings A.4). If timeout is
specified, the profiled command is terminated upon reaching the threshold, otherwise
the collection is run indefinitely, or until the process is killed.

5. When the data collection finishes, the elevated eBPF process detaches the probes and
terminates. The original process transforms (transform(**kwargs)) the raw data
from the output file into the Perun profile (for an example of the resulting profile
resource see Listings A.5) and cleans up the engine resources (cleanup(**kwargs)).
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Figure 6.2: An illustration of the eBPF engine: (1) the Tracer assembles the eBPF
program with probe handlers; (2) a runtime configuration is built; (3) the eBPF process is
spawned with elevated privileges; (4a) the process attaches the probes and (4b) spawns the
profiled process which fires events every time a probe is hit; (5) the eBPF process polls the
performance events fired by probe handlers and stores the performance data into the raw
output file; (6) finally, the Tracer process transforms the raw data into the Perun profile.
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The eBPF supports Tracepoints, USDT and performance counters, however, their usage
in BCC is still partially limited. It is, e.g., not possible to reliably attach USDT probes into
processes that are not already running, and only a modest subset of all the kernel-supported
performance counters are available through the BCC interface. However, it is expected that
BCC will support the complete probing spectrum in the future, hence our eBPF engine is
already prepared to handle such probes. We summarize the new engine as follows:

Dependencies: eBPF The ebpf engine depends on the underlying eBPF technology
which must be supported by the kernel (at least version 3.18).

BCC The BCC provides an interface for operating the eBPF in-
kernel virtual machine through a Python interface; program-
ming directly in the eBPF bytecode is rather complicated.

Limitations: C/C++ The engine currently supports instrumentation only for
C/C++ programs.

Executable Only dynamic binary instrumentation is supported; only
single-executable instrumentation is automated (e.g., shared
libraries are not automatically instrumented).

Probe Limit The eBPF instrumentation has a limit on the number of si-
multaneously attached probes (approximately 1000 probes).

Resources: ebpf_process The ebpf process spawned with elevated privileges in order
to operate the eBPF virtual machine.

program The collection program file with probe handlers.
runtime_conf The runtime configuration file used by the eBPF process with

elevated privileges to configure itself.
data The raw data output file.

CLI The proposed CLI for Tracer 0.19 can be found in Table A.1.

6.2 Optimization Architecture
The main workflow of Perun is implemented in the runner module responsible for running
and managing the collectors and postprocessors. The actual collection is broken into four
steps (before, collect, after and teardown), hence, we propose to interleave these phases
with optimization phases. In particular, we propose to implement selected new phases that
will be called before the actual runner phase. Such optimization layer will allow to run
selected optimizations without the need to manually invoke them from the collectors. This
architecture satisfies the FR_A (Automation), FR_P (Implemented in Perun) and
NR_G (Generic implementation) requirements (see Chapter 5).

We selected the following phase transitions to run selected optimizations:

• before → collect (pre-optimize): at this point, most of the collection parameters
(e.g. the target executable, its parameters and workload, diagnostic modes, etc.)
should already be configured, the collection program should be prepared for assem-
bly2, and the probe locations should be clearly identified (e.g. as the function and
USDT locations obtained from the collection strategies). We expect that optimiza-
tions employed at this stage will mainly optimize the collection process itself, specif-
ically, the set of instrumented probes (according to, e.g., the OC_F: Freshness).
In case of Tracer, at this stage, the collection program is not yet assembled and thus
filtering and eliminating some of the probe locations is still possible. Hence, limiting
ourselves only to the subset of necessary probes can induce significant optimization.

2We assemble the collection program in the collect phase so that the optimization techniques can modify
the set of instrumented probes or their configuration (such as the sampling) to avoid re-assembly.
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This pre-optimization interface expects a config object (defined in the Listings A.7)
within the collection configuration (since the whole configuration is being passed to
the optimization layer as a keyword arguments **kwargs).

• after→ teardown (post-optimize): at this point, the collection had been terminated
and the profiling data had been generated. We expect that certain optimization
techniques employed at this stage will either work iteratively across multiple profiling
runs (and, hence, will need to gather profiling statistics after the collection is done)
or further optimize the size of the resulting profile, thus targeting the OC_DV:
Data Volume criterion. In particular, in this phase transition, the Tracer process
had already transformed the raw performance data into the unified profile resources
(available as a profile within the collection configuration) thus allowing to compute
statistics (such as call count or total time per function, Q1, Q3 and median values
of recorded duration, etc.) in a generic way. The computed statistics can be further
exploited in subsequent profiling to, e.g., filter out functions with extreme call count.

At last, we noticed that some optimizations could potentially be employed during the
collection itself. In particular, we will mention eBPF where we can leverage the dynamic
probe manipulation to attach or detach probes during the profiling. Indeed, such optimiza-
tion has to be, at least partially, managed directly from the engine during the collection.

6.2.1 Optimization Pipelines and Parameters Prediction

We designed the optimizations as a part of Perun architecture with their selection available
through the CLI summarized in Table A.2. Usually, for efficient profiling session one uses
several distinct optimizations, however, the manual configuration of numerous techniques
can become a tedious job. Thus, we propose to enhance the optimization process with
two additional techniques: (1) the concept of optimization pipelines, a fixed sequence of
optimizations; and (2) automatic prediction of suitable parameters for regular profiling.
Figure 6.3 illustrates the new optimization layer.
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on?

Collection configuration

Before Collect After Teardown

opt_1 opt_2 opt_4 opt_7opt3 opt_5 opt_6 opt_8 opt_9

Optimization pipeline

Pre-optimize Run-optimize
(eBPF-specific) Post-optimize
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Collector

Optimize

optimization
on?

Figure 6.3: A schematic module overview of the new optimization layer and its interaction
with the runner and collectors. The runner has been modified to automatically perform
the optimizations (if enabled) between the selected collection phases, independently of the
specific collector. Blue modules represent selected optimizations for some concrete run.
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The first enhancement, the pipelines, are predefined sequences of optimizations that aim
to be a quick user default to configure the profiling optimizations according to some criteria
(e.g. reducing the profile size, collection time etc.). Note that the user still has the ability
to alter the pipelines through the CLI and, thus, perform a more deeper profiling of SUT.
We identified several pipelines and offer them in Perun interface (see Sec. 7.3).

While it would be possible to use fixed parameters for optimizations, we argue that for
practical usage they should be inferred dynamically to scale well with the project size. Thus,
the other enhancement is a parameter prediction module that estimates the optimization
parameters based on the selected project metrics (both static and dynamic) such as the
number of functions, maximal call graph depth, various statistics, etc. We include the full
list of the optimization parameters and their proposed prediction formulae in Table A.4.

6.2.2 The stats module

At last, we extended the Perun core with the stats: a module designed to store and
manipulate various developer-defined statistics for certain profiles and project versions.
We chose such design, because these statistics are not optimization-specific; are related to
project and repository; and, could be used by other modules (or user) for further usage.

For each project, we store stats as an internal directory tree within the .perun direc-
tory with an architecture similar to Git or Perun internals. Specifically, it uses the Secure
Hash Algorithm (SHA) value of the project versions (as labeled in Git) to store the cre-
ated files accordingly. Further manipulation of the stats files (updating and retrieving the
stats contents; lookup of the created stats files across the project versions; or deleting) is
executable through API or CLI described in Table A.3.

Since the stats module is not the main focus of this work, we will only briefly describe
its internals. Selected optimizations utilize the stats to store collection statistics, extracted
call graphs or the optimization parameters. Every created optimization stats file is stored
in the appropriate version directory and identified by the profiling command, arguments
and workload. Thus, when the same command is being profiled, the previous stats file
can be easily leveraged. Figure 6.4 illustrates an example stats directory with several files
corresponding to different project versions; Listings 6.1 shows an example of a stats file.

Figure 6.4: An example of the stats hi-
erarchy, where folders are named after the
SHA of the project version, each directory
stores stats file for corresponding version.

" bio_read_bits ": {
" total ": 164598,
"Q3": 3.0,
" sampled_count ": 67591,
" count ": 67591,
"min": 2,
" median ": 2.0,
"Q1": 2.0,
"IQR": 1.0,
"max": 19,
" sample ": 1,
"avg": 2.4352058706040745

}

Listing 6.1: An example of a stats file:
statistics about the profiled functions in
the previous profiling (see Sec. 7.1.2 for
definitions) for function bio_read_bits.
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Chapter 7

Optimization Techniques

Finally, we introduce the focus of this work: the seven optimization techniques for perfor-
mance data collection. For each optimization we discuss their features, their requirements,
limitations, and the criteria they target. First, we describe the optimization resources (such
as function call graph or control flow graph) that are shared by certain techniques and are
needed to optimize the collection. At the end, we elaborate on the concept of optimiza-
tion pipelines (as already introduced in Sec. 6.2.1) in more details and present the three
implemented pipelines with concrete sequence of configured optimizations.

7.1 Optimization Resources
The optimization module provides shared resources: internal data structures used in the
specific optimization methods. While some of these resources can be optional for a given
method and serve merely to improve the precision of the results, others are essential for
successful optimization. The resources are either gathered by the optimization module itself
during previous profiling, or extracted from the project using external tools. Currently, we
utilize the call graph, control flow graph and dynamic statistics resources. In the following,
we will briefly define these resources, describe how they are collected and how can they be
utilized to optimize the collection process.

7.1.1 Call Graph and Control Flow Graph

Informally, a call graph (CG) represents the caller-callee relationship (i.e. calls from the
caller to the callee) between program functions. In the context of profiling, call graphs
express the inclusive consumption of resources and can be used to locate the performance
bottleneck with more precision. Formally:

Definition 7.1.1. Given a program 𝑃 , a simple call graph of 𝑃 is a rooted directed graph
𝐺 = (𝑉,𝐸, 𝑟𝑜𝑜𝑡) where 𝑉 is the set of program functions, edges 𝐸 = (𝑐𝑎𝑙𝑙𝑒𝑟, 𝑐𝑎𝑙𝑙𝑒𝑒) ⊆ 𝑉 ×𝑉
represent the function call from 𝑐𝑎𝑙𝑙𝑒𝑟 to 𝑐𝑎𝑙𝑙𝑒𝑒 in 𝑃 and 𝑟𝑜𝑜𝑡 is the root vertex of the graph.

Note, that such simple definition of CG is insufficient w.r.t a context-sensitive interpro-
cedural analysis (as noted by [29]) and thus cannot accurately capture the exact caller-callee
relation across different analysis-time states — mainly since no additional information about
the call context (such as the stack trace) is available to distinguish the different states. Nev-
ertheless, we argue that while using advanced context-sensitive extraction algorithms could
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provide more precise CG, it would come with the trade-off of increased time and memory
consumption. Still, we believe that even the limited CG will suffice to our use case.

Informally, a control flow graph (CFG) contains all of the execution paths that a program
may traverse through, using a graph notation where nodes represent a set of non-jump
instructions and edges represent jump instructions (i.e., jumps in the control flow). In the
context of profiling, control flow graphs express the most performance-intensive execution
paths and can be leveraged to pinpoint performance hotspots within a function. A control
flow graph (CFG) and basic block can be defined as follows [2, 35]:

Definition 7.1.2. A basic block is a linear sequence of program instructions with at most
one entry point and at most one exit point. Program entry blocks might not have prede-
cessors that are in the profiled executable; program terminating blocks have no successors.

Definition 7.1.3. A control flow graph is a directed graph 𝐺 = (𝑉,𝐸) in which the nodes
𝑉 represent basic blocks and the edges 𝐸 ⊆ 𝑉 × 𝑉 represent control flow paths.

Since both the CG and CFG are extracted simultaneously and internally are stored in
the same structure, we will denote the CG and CFG as Call Graph Resource (CGR).

Extraction. We perform a static extraction of both the CG and CFG from the project
binary using the angr analysis framework [61]. We also considered the radare21 or
gen-callgraph2 projects. However, while the former is a rather advanced reverse engi-
neering framework, it is designed mainly as a command-line tool (although bindings to
Python are available through additional dependencies), and the latter utilizes only naive
extraction algorithm. Hence, the angr framework — designed as a Python library and ex-
ploiting advanced extraction algorithms — appeared to be the best option. Although, the
static reconstruction of call graph tends to yield overapproximated results, compared to the
dynamic approach, it considers all of the possible execution paths and, thus, the extraction
has to be performed only once per binary executable file (which is especially important as
the analysis can be significantly time consuming for large-scale projects, and for different
combinations of program arguments and program workloads). The extraction results are
directed graph representation of the application CG and CFG.

The angr framework. Angr3 is a python framework for manipulation and analysis of
executable binary. It exploits proprietary CLE Loads Everything4 file loader and binary
code lifter PyVEX, to hide the specifics of different binary formats while providing common
analysis methods for the user. Generally, angr can be used for various manipulation and
analysis tasks (such as symbolic execution, hardening, exploit generation, etc.), however, we
leverage only the control flow reconstruction capabilities of the framework.

Angr supports multiple analyses with varying extraction speed and precision of the
resulting CFG (faster approaches may yield a result faster at the cost of approximating
certain computations). We, in particular, use the CFGFast analysis that attempts to build
the CFG using lightweight approach and heuristics. This is opposed to the CFGEmulated
which simulates the program execution and performs expensive data flow analysis, however,
according to our experiments, it can take up to 20x more time to finish the extraction for

1See https://github.com/radareorg/radare2.
2See https://github.com/onlyuser/gen-callgraph.
3See http://angr.io/ for more details.
4See https://github.com/angr/cle.
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large-scale projects, while also consuming considerably more memory in comparison with
CFGFast. We limit the entry address of the main function as the starting point of the
analysis and disable heuristics for automated lookup of other possible entry points. This
way, we effectively obtain the CFG as a rooted directional graph with nodes representing
only functions reachable from the main function. We observed, that this alone can provide
up to two times extraction speedup while not affecting the precision of the relevant (and
further utilized) part of the CFG. Furthermore, we restrict the analysis scope only to the
executable binary file itself, not including shared libraries and references to external objects
since the Tracer itself does not yet support automated configuration of probes in external
libraries (however, support for manual configuration has been added in this work).

Although the accuracy of the CFG extracted by this configuration may be slightly in-
ferior to the fully-fledged CFGEmulated analysis, our initial experiments with angr demon-
strated that the CFGFast analysis can scale better for large projects (we experimented with
the CPython-3.8.2 executable binary).

The CGR construction. The CFGFast analysis reconstructs the CFG of the program as
directed graph, and generates CG as a side product. The CFG is broken into basic blocks,
and each block consists of sequence of ASM instructions. However, since certain node and
graph properties are not part of the extracted CFG or CG by default, we pre-compute these
properties so they may be easily accessed by our methods (without the need for potentially
costly re-computation). Hence, we convert the CFG and CG to CGR with all the necessary
properties of both the CG and CFG for the individual methods. We define CGR as follows:

Definition 7.1.4. Given 𝐶𝐺 = (𝑉𝐶𝐺, 𝐸𝐶𝐺, 𝑟𝑜𝑜𝑡) and 𝐶𝐹𝐺 = (𝑉𝐶𝐹𝐺, 𝐸𝐶𝐹𝐺), a call graph
resource is a tuple 𝑅 = (𝜆𝐹 , 𝜆𝐶 , 𝜆𝐿, 𝑉0, 𝑔𝑑, 𝜆𝐶𝐹𝐺) where:

• 𝜆𝐹 = {(𝑣, 𝐶𝑎𝑙𝑙𝑒𝑟𝑠, 𝐶𝑎𝑙𝑙𝑒𝑒𝑠) | 𝑣 ∈ 𝑉𝐶𝐺}, where 𝐶𝑎𝑙𝑙𝑒𝑟𝑠 = {𝑢 | (𝑢, 𝑣) ∈ 𝐸𝐶𝐺} and
𝐶𝑎𝑙𝑙𝑒𝑒𝑠 = {𝑤 | (𝑣, 𝑤) ∈ 𝐸𝐶𝐺}, is the function map that keeps references to all callers
and callees of the function vertex 𝑣.

• 𝜆𝑅 = {(𝑣, 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒) | 𝑣 ∈ 𝑉𝐶𝐺} is the reachable map where 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 is a set of
reachable functions from 𝑣 defined as follows:

{𝑟 | 𝑟 ∈ 𝑉𝐶𝐺 ∧ ∀𝑟 ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 : ∃ sequence 𝑣 = 𝑣0, 𝑣1, 𝑣2, . . . , 𝑣𝑚 = 𝑟

such that (𝑣𝑗 , 𝑣𝑗+1) ∈ 𝐸𝐶𝐺 ∀0 ≤ 𝑗 ≤ 𝑚− 1}

• 𝜆𝐿 = {(𝑙, 𝑉𝑙) | 𝑙 = 0, 1, . . . , 𝜔} is the level map where 𝜔 is the length of the longest
detected acyclic directed path (starting in 𝑚𝑎𝑖𝑛 with level 0), 𝑉𝑙 = {𝑣 | 𝑣 ∈ 𝑉𝐶𝐺 ∧
𝐸𝐿𝑃 (𝑣) = 𝑙} is the set of vertices (function nodes) that have the same longest path
length estimate (matching the 𝑙𝑒𝑣𝑒𝑙) and 𝐸𝐿𝑃 is the Longest Path Estimate function.

• 𝑉0 = {𝑣 | 𝑣 ∈ 𝑉𝐶𝐺 ∧ 𝐶𝑎𝑙𝑙𝑒𝑒𝑠[𝑣] = ∅} is the set of leaf vertices of the 𝐶𝐺.

• 𝑔𝑑 = 𝑚𝑎𝑥(𝐿𝑒𝑣𝑒𝑙𝑠) is the maximal detected acyclic path length (𝑙𝑒𝑣𝑒𝑙).

• 𝜆𝐶𝐹𝐺 = {(𝑣, 𝐶𝐹 ) | 𝑣 ∈ 𝑉𝐶𝐺 ∧ 𝐶𝐹 ∈ 𝐶𝐹𝐺} is the control flow map where 𝐶𝐹 =
(𝑣,𝐵,𝐸) is the vertex control flow graph (i.e. the control flow graph of the given
function 𝑣) with the corresponding basic blocks 𝐵 and edges 𝐸.
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Informally, 𝜆𝐹 stores the call graph structure (nodes and edges) in a dictionary-like
structure which is more convenient from the implementation perspective. The 𝜆𝑅 is used to
evaluate the significance of a function 𝑓 based on the number of unique reachable functions
𝑟 from 𝑓 . Furthermore, 𝜆𝐿 allows for a quick access to all the functions with the same
level estimate for optimization methods based on, e.g., traversing the call graph levels
sequentially, while the 𝑔𝑑 is used mostly for the parameters prediction. The 𝑉0 is the set
of call graph leaf functions that, similarly to 𝜆𝐿, allows the methods to traverse the call
graph in the reversed order (i.e., from the bottom functions up to the main). At last,
𝜆𝐶𝐹𝐺 partitions the whole CFG into 𝐶𝐹 subgraphs that represent the control flow of each
corresponding function, since internally the CFG is analyzed on a per-function basis. As
per our previous experience with profiling numerous projects, we assume the following:

Assumption 7.1.1. Given a function call site, we expect that its total call count in this
particular path-context increases proportionately to the (trace) path length from the root
node to the call site in the given call graph. This implicates that the functions represented
as leaf nodes within the call graph are likely to be invoked more often than other functions
on the path from the root node to the leaf node.

This assumption — and the fact that we have exactly one handler for each function and
distinguishing different path-contexts (e.g., by callers) within the handler is not a trivial nor
time-inexpensive operation5 — means that for each function we can effectively leverage only
one call count value approximation (inferred globally across all the different path-contexts)
for the optimization purposes.

However, estimating the actual call count value (although just approximate) solely on
the call graph structure is extremely inaccurate, so we will instead (still unsoundly) operate
mainly with the so-called depth-based prediction used to compare two call graph functions 𝑓
and 𝑔 as follows: 𝜓(𝑓) ≤ 𝜓(𝑔)⇔ |𝐿𝑃 (𝑓)| ≤ |𝐿𝑃 (𝑔)|, where 𝜓 is the call count approxima-
tion and 𝐿𝑃 is the longest path. Unfortunately, computing the exact length of the longest
path is not feasible in our case, since the longest path problem is known to be NP-complete
for directed graphs with loops [31]. Thus, while constructing most of the CGR proper-
ties is rather straightforward, computing the level map 𝜆𝐿 structure requires to estimate
longest paths. We propose to use a heuristic based on a hierarchical callers inspection that
computes for each call site a lower bound of its level.

Estimating the longest path for a callsite. We propose an algorithm that estimates
the length of the longest path (also denoted as level) of each function within the call
graph by leveraging Breadth-First Search (BFS) (interleaved with local, focused BFS that
operates on cyclic subgraphs), and that exploits heuristics used for nodes ordering and
placement employed in, e.g. graph visualization libraries and tools, such as Graphviz6.
The Algorithm 1 illustrates the procedure of the level estimation as a pseudocode.

First, we start from the root main node and inspect the graph vertices in a global BFS
manner at line 5. For each node, in case all of its callers were fully resolved (i.e. present in
the finished set) we determine its level as the maximum of all callers’ and callees’ 𝑙𝑒𝑣𝑒𝑙𝑠+1.
Once we fully resolve the node by assigning a level, we expand the inspect_queue with all
of its outgoing edges (𝑛𝑜𝑑𝑒, 𝑐𝑎𝑙𝑙𝑒𝑒1), (𝑛𝑜𝑑𝑒, 𝑐𝑎𝑙𝑙𝑒𝑒2), . . . , (𝑛𝑜𝑑𝑒, 𝑐𝑎𝑙𝑙𝑒𝑒𝑛).

5Albeit, this is technically possible in our implementation, our experiments have shown that the overhead
precise CG analysis is significant. We argue, such trade-off would not result into a better optimizations.

6https://www.graphviz.org/
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Algorithm 1 Level Estimator for all call graph vertices
Input: Function map 𝐹𝑀 = 𝜆𝐹 = {(𝑣, 𝑐𝑎𝑙𝑙𝑒𝑟𝑠, 𝑐𝑎𝑙𝑙𝑒𝑒𝑠) | 𝑣 ∈ 𝑉𝐶𝐺}
Output: The 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 set with level estimates needed to construct 𝜆𝐿

1: procedure Estimate_Level(𝐹𝑀)
2: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← ∅ ◁ The level estimates; functions not fully resolved
3: 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑞𝑢𝑒𝑢𝑒← [(𝐹𝑀.𝑟𝑜𝑜𝑡, 𝑟𝑜𝑜𝑡_𝑐𝑎𝑙𝑙𝑒𝑒, 0) | 𝑟𝑜𝑜𝑡_𝑐𝑎𝑙𝑙𝑒𝑒 ∈ 𝐹𝑀.𝑟𝑜𝑜𝑡.𝑐𝑎𝑙𝑙𝑒𝑒𝑠]
4: ◁ The global BFS phase
5: while 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑞𝑢𝑒𝑢𝑒 do
6: 𝑐𝑎𝑙𝑙𝑒𝑟, 𝑐𝑎𝑙𝑙𝑒𝑒, 𝑙𝑒𝑣𝑒𝑙← 𝑖𝑛𝑠𝑝𝑒𝑐𝑡.𝑝𝑜𝑝()
7: if 𝑐𝑎𝑙𝑙𝑒𝑒 not in 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑 then
8: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑(𝑐𝑎𝑙𝑙𝑒𝑒)
9: ◁ Everything is initialized with 𝑙𝑒𝑣𝑒𝑙← 0, 𝑙𝑒𝑣𝑒𝑙𝑠← [], 𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑙𝑙𝑒𝑟𝑠← []

10: 𝑐𝑎𝑙𝑙𝑒𝑒.𝑙𝑒𝑣𝑒𝑙𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑒𝑣𝑒𝑙)
11: 𝑐𝑎𝑙𝑙𝑒𝑒.𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑙𝑙𝑒𝑟𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑐𝑎𝑙𝑙𝑒𝑟)
12: if 𝑐𝑎𝑙𝑙𝑒𝑒.𝑐𝑎𝑙𝑙𝑒𝑟𝑠 = 𝑐𝑎𝑙𝑙𝑒𝑒.𝑖𝑛𝑠𝑝𝑒𝑐𝑡𝑒𝑑_𝑐𝑎𝑙𝑙𝑒𝑟𝑠 then
13: 𝑐𝑎𝑙𝑙𝑒𝑒.𝑙𝑒𝑣𝑒𝑙← 𝑠𝑒𝑡_𝑙𝑒𝑣𝑒𝑙(𝑐𝑎𝑙𝑙𝑒𝑒)
14: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑.𝑎𝑑𝑑(𝑐𝑎𝑙𝑙𝑒𝑒)
15: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐𝑎𝑙𝑙𝑒𝑒)
16: for all 𝑐_𝑐𝑎𝑙𝑙𝑒𝑒 in 𝑐𝑎𝑙𝑙𝑒𝑒.𝑐𝑎𝑙𝑙𝑒𝑒𝑠 do
17: 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑐𝑎𝑙𝑙𝑒𝑒, 𝑐_𝑐𝑎𝑙𝑙𝑒𝑒, 𝑐𝑎𝑙𝑙𝑒𝑒.𝑙𝑒𝑣𝑒𝑙))
18: ◁ The focused BFS phase
19: while not 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑞𝑢𝑒𝑢𝑒 do ◁ The set is ordered by the 𝑙𝑒𝑣𝑒𝑙 estimation
20: 𝑐← 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
21: 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑.𝑎𝑑𝑑(𝑐)
22: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒(𝑐)
23: 𝑐.𝑙𝑒𝑣𝑒𝑙← 𝑠𝑒𝑡_𝑙𝑒𝑣𝑒𝑙(𝑐)
24: for all 𝑐_𝑐𝑎𝑙𝑙𝑒𝑒 in 𝑐.𝑐𝑎𝑙𝑙𝑒𝑒𝑠 do
25: 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑞𝑢𝑒𝑢𝑒.𝑝𝑢𝑠ℎ((𝑐, 𝑐_𝑐𝑎𝑙𝑙𝑒𝑒, 𝑐.𝑙𝑒𝑣𝑒𝑙))
26: return 𝑓𝑖𝑛𝑖𝑠ℎ𝑒𝑑

27: procedure Set_Level(𝑓𝑢𝑛𝑐)
28: ◁ Compute the maximum level of all callers and callees (even unresolved)
29: 𝑐𝑎𝑙𝑙𝑒𝑟𝑠_𝑚𝑎𝑥← 𝑚𝑎𝑥([𝑚𝑎𝑥(𝑐𝑟.𝑙𝑒𝑣𝑒𝑙𝑠) | 𝑐𝑟 ∈ 𝑓𝑢𝑛𝑐.𝑐𝑎𝑙𝑙𝑒𝑟𝑠])
30: 𝑐𝑎𝑙𝑙𝑒𝑒𝑠_𝑚𝑎𝑥← 𝑚𝑎𝑥([𝑚𝑎𝑥(𝑐𝑒.𝑙𝑒𝑣𝑒𝑙𝑠) | 𝑐𝑒 ∈ 𝑓𝑢𝑛𝑐.𝑐𝑎𝑙𝑙𝑒𝑒𝑠])
31: return 𝑚𝑎𝑥(𝑐𝑎𝑙𝑙𝑒𝑟𝑠_𝑚𝑎𝑥, 𝑐𝑎𝑙𝑙𝑒𝑒_𝑚𝑎𝑥) + 1

32: procedure Lower_Bound_Representative(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)
33: ◁ Representative must have the currently lowest level estimate
34: 𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙← 𝑚𝑖𝑛([𝑚𝑎𝑥(𝑐.𝑙𝑒𝑣𝑒𝑙𝑠) | 𝑐 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠])
35: 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠← [𝑐 | 𝑐 ∈ 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠⇔ 𝑚𝑎𝑥(𝑐.𝑙𝑒𝑣𝑒𝑙𝑠) = 𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙]
36: return 𝑠𝑜𝑟𝑡𝑒𝑑(𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑣𝑒𝑠)[0]

The global BFS ends when the inspect_queue becomes empty. That either means that
(1) all of the nodes were fully resolved and have been assigned a level, or (2) the graph
contains loops and the remaining nodes cannot be fully resolved until the cycle is broken.
We can break the cycle by fully resolving at least one of the node in the cycle. Then the
estimation process can continue, again, in the global BFS manner.

We break the cycle in CG by the inner cycle on line 19 that traverses the sub-call graph
in a focused BFS approach. We pick one or more candidates (i.e. unresolved) nodes that
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are part of the cycle, approximate their level as a supremum of the current 𝑙𝑒𝑣𝑒𝑙𝑠 estimate
(i.e., ignoring candidate’s calleers and callees that were not fully resolved) and enqueue
their outgoing edges. For example, if a candidate has the following 𝑙𝑒𝑣𝑒𝑙𝑠 estimate, where
? denotes unresolved level: {𝑐𝑎𝑙𝑙𝑒𝑟1 : 10, 𝑐𝑎𝑙𝑙𝑒𝑟2 : 15, 𝑐𝑎𝑙𝑙𝑒𝑟3 :?, 𝑐𝑎𝑙𝑙𝑒𝑒1 : 12, 𝑐𝑎𝑙𝑙𝑒𝑒2 :?},
we estimate the resulting 𝑙𝑒𝑣𝑒𝑙 = 16. The candidate nodes are basically lower bound
representatives of the unresolved nodes of the cycle (a set ordered by the current level
estimates). By selecting a node from the candidates’ lower bound, we increase the chance of
resolving more unresolved callers from other candidate nodes with a higher level estimate —
although with a possible propagation of the estimation error.

The algorithm terminates when all nodes have been fully resolved with a level estimate.
The estimator scales well even for enormous graphs with thousands of vertices, strong
components with hundreds of vertices and up to tens of thousands of edges, so that the
construction time of the 𝜆𝐿 is negligible with respect to the resource extraction process.
Specifically, the 𝜆𝐿 construction takes only ≈ 0.046𝑠 for the CPython (see Section 8.1) CG
which contains approximately 1800 vertices, 8000 edges and with more than 500 vertices in
the largest strong component, while the call graph extraction itself takes about 48𝑠.

Using CGR in optimizations. We use the CGR of the input SUT throughout the pre-
optimize transition phase (see Section 6.2). Methods that do directly leverage the CGR are
primarily based on static analysis approaches that traverse the graph in different directions
(e.g., root to leaves and vice versa) and identify functions that should (not) be profiled
according to certain conditions or properties (e.g., the vertex level).

7.1.2 Dynamic Statistics

The dynamic statistics resource are summaries and statistics obtained from the collected
data or from the collection process itself. Note, that this resource is created directly by
the Optimization module during the post-optimize transition phase and as such cannot be
utilized immediately in the same collection run. Instead, the resource is intended either for
iterative optimizations7 or, as an additional (and usually optional) parameter, for achieving
more precise optimization results. Specifically, the statistics can be exploited to, e.g.,
adjust probe sampling according to the corresponding function call count, or even exclude
functions that are invoked too frequently from the profiling altogether. Currently, the
dynamic statistics resource contains the following metrics for each profiled function:

• Sampled Count is the number of collected performance records for the given profiled
function in context of profiled program with given arguments and workloads. The
count is independent of any kind of sampling settings.

• Sample stores the sampling configuration for the given function.

• Count is an estimate of the actual number of function calls, with the sampling settings
taken into account. Since the first function call is always recorded, the estimation
formula is 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡+ ((𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡− 1) * (𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑣𝑎𝑙𝑢𝑒− 1)).

• Total is the sum of the collected records (e.g. the elapsed time of each function call).

• Min, Max and Avg store the minimum, maximum and average of the records.
7Iterative optimizations work by leveraging gathered data about the optimization effectiveness of the

previous profiling to further improve the effectiveness of the next iteration.

49



• Median, Q1 and Q3 are the three quartile values that split the record values into
four equally-sized segments. Quartiles are generally the preferred indicators for data
sets (compared to e.g. the maximum, minimum and average) since they are not
skewed by the outliers and can be leveraged to approximate the data spread.

• IQR (Interquartile range) is the difference between the first and third quartile (𝑄1−
𝑄3) and thus covers the middle 50% of the data distribution.

An example of a Dynamic Statistics record for a specific function can be seen in List-
ings 6.1. Similarly to the CGR, we store the dynamic statistics resource within the stats
directory in Perun to avoid recomputation and to use in subsequent analyses. However,
unlike the CGR, we expect the dynamic statistics resource to be exploited by various Perun
techniques, methods or analyses, all of which not necessarily related to this work.

7.2 Proposed Optimization Techniques
The goal of this work is to implement a number of optimization techniques that attempt to
speed up the data collection process or reduce the data volume while also minimizing the
inevitable information loss: a trade-off of the optimizations. We propose we can achieve
this mainly by identifying locations (e.g. functions) that generate enormous volumes of
data, and yet their impact on the program performance is insignificant. We claim, we can
completely exclude such locations from the profiling, or at least sample their records. Such
approach will definitely lead to a considerable optimization of performance testing.

Naturally, the core of each optimization problem is determining how to effectively select
the candidate functions and how to configure the corresponding collection probes (e.g.,
what should the sampling ratio be) for the subsequent collection process.

For each proposed technique, we (1) discuss the underlying motivation and intuition,
(2) describe the general idea of the method, (3) file the optimization to chosen optimization
stage, and (4) list the possible implementation approaches (if the implementation can be
approached in more than one ways). Moreover, we specify the inputs, the parameters,
required and optional resources, expected output and targeted optimization criteria. In
some cases, we provide a pseudocode of the method or a schematic diagram; in case the
method is straightforward we omit such illustrations and only describe the general idea or
interesting points. At last, we assess the advantages and disadvantages of every method,
elaborate on the typical expected use-cases and discuss possible future work and extensions.

7.2.1 Static Baseline

Static Baseline optimization is based on the formal static analysis of the project source
code. Specifically, we leverage the resource bounds analysis (with the focus on amortized
complexity analysis), which is implemented in the Perun Bounds collector: a wrapper over
the well-established Loopus tool [63].

Parameters: sources The source files of the project.
complexity The lowest complexity class used for filtering, i.e. we remove

any function with complexity lesser or equal than complexity.
keep_top Protected top keep_top CGR levels.

Resources: CGR (Required) To access to the CG functions and levels.
Output: CGR (Modified) To remove filtered functions from the CG.
Dependencies: Loopus The underlying bounds analysis tool; requires LLVM toolchain

to operate, and the clang-3.5 compiler.
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Limitations: C language The limitation of the Loopus tool.
Phase: pre-optimize
Application Scope: medium-scale Only for projects with simple compilation (e.g., no advanced

Makefile or auto configuration features).
Primary OC: OC_T
Time Overhead: noticeable Due to the compilation process.

Motivation and Overview. Loopus is a static resource bounds analyser that converts
the input source program to an abstract program model, and then leverages the symbolic
execution and system of difference constraint equations to find a precise, amortized upper
bound of loops and functions. The advantage of Loopus is that it can prove the time
complexities8 of program loops and functions. However, the Loopus still has its limitations:
it cannot infer bounds for certain classes of non-trivial loops (notable cases, as described
by the authors in [63], include when, e.g. we fail to find a termination proof or to infer an
upper bound invariant for some variable reset) or loops that manipulate with the heap9 .

Still, we believe we can exploit the Bounds collector (and the Loopus tool), in the pre-
optimization phase, to statically determine the complexity of functions. Based on these
complexities we can then subsequently filter out non-complex functions: since, naturally,
the performance bottlenecks are mainly caused by function with non-constant complexity.

Implementation. We leverage the existing Bounds collector in Perun: a Loopus wrapper.
Note, however, that we use Loopus with unsound heuristic, that extrapolates any traversal
of dynamic data structure into a singly-linked list traversal. We argue, that in our case,
using unsound heuristics in order to handle more program classes could be worth it.

In the optimization, we first internally call the collector, yielding the Perun profile.
For each function, the profile contains so called local and total bound records, where lo-
cal bounds represent individual loops and code chunks in the function, and total bound
represents the bound of the whole function. Every bound is identified by its class, i.e.
the polynomial degree of the bound in the worst-case asymptotic complexity notation (e.g.
𝒪(1),𝒪(𝑛),𝒪(𝑛2), . . . ,𝒪(𝑛𝑚)), its bound in form of the ranking function and its location
uid. Listings 7.1 and 7.2 show an example of a local and total bound records for a sample
project. One can see, that both bounds belong to the same function, and while one of its
local bound is constant, overall the function encode_segment_bit_plane_coding is linear
in the size of the structure bpe.

8Note, however, these are upper bounds, so they cannot be effectively used to find performance bugs.
9There exist a well-established approach that transforms the input heap-manipulating program into

integer program proposed, e.g. in the Ranger [19] or the Thor [40] tools. However, these approaches are
heavily dependent on shape analyses and, thus, still cannot scale well even on medium sized projects.

51



Listing 7.1: Local bound record
" bound ": "4",
"type": " local bound ",
" class ": "O(1)",
"uid": {

" column ": 6,
"line": 2724,
" source ": "bpe.c",
" function ": "

encode_segment_bit_plane_coding "
},
"time": "0.0"

Listing 7.2: Total bound record
" bound ": "1 + max( Select (0, bpe), 0)",
"type": " total bound ",
" class ": "O(n^1)",
"uid": {

" column ": 4,
"line": 2781,
" source ": "bpe.c",
" function ": "

encode_segment_bit_plane_coding "
},
"time": "0.0"

By the construction, the Bounds collector returns exactly one total bound for each
function. We use this total complexity as an indicator in our Static Baseline optimization.
Currently, we distinguish between the Constant, Linear, Quadratic, Cubic and Quartic
complexities (the Loopus expresses the complexities only in polynomial notation). Note,
that we argue, that it is enough to limit ourselves to these classes, because any higher
class (such as non-elementary, exponential, etc.) can never be omitted by the performance
analysis as these have the considerable impact on the program complexity.

The main idea of the optimization is then straightforward: we identify functions with
complexity below or equal to the provided threshold complexity, e.g., the Constant, and
remove them from the set of profiled functions (unless they are in the protected CG levels
specified by the keep_top). By default, we filter out only the Constant functions. The in-
tuition is that proved constant functions are usually not the real location of the performance
bottlenecks; the only case they are the source is when they are invoked many times by other
functions (or new performance bugs are introduced by recent changes, which can, however,
be covered by other optimizations). However, any such caller will have non-constant com-
plexity and will not likely by omitted from the analysis, and hence, we will preserve the
detection of potential performance issue. On the other hand, if the constant function is
called many times, its overhead in the collection will be significant.

Method Assessment. The Static Baseline targets primarily medium-sized projects which
contain significant amount of functions with constant (or even linear) time complexity that
can be safely removed — as we remarked, such functions are usually not as significant from
the performance point of view and only generate a considerable amount of data. More-
over, this method is restricted to projects that can be analyzed using the Loopus tool, i.e.,
the LLVM toolchain and compilation process should be supported on the target host. Large-
scale projects can benefit from the Static Baseline method as well, however, with the current
version of the Bounds collector, the codebase must support direct source compilation using
the LLVM, thus no automated configuration or Makefile generation should be employed.
Furthermore, we identified the following advantages, disadvantages and shortcomings:

+ Fast, scalable and sound10 underlying
static analysis technique.

+ Targets functions which have small in-
dividual performance impact but gen-
erate the majority of data.

- Requires access to the source files,
compilation process and LLVM ≤ 3.5.

- Provides incomplete results, i.e., the
analysis fails for some functions.

- Currently does not support Makefile
compilation.

10For non-heap-manipulating programs
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Future Work. Currently, the main issue that limits the effective usage of Static Baseline
for large codebases is the missing support of Makefile compilation. Thus, the leveraged
Bounds collector has to be extended to not only handle the source files, but also the Make-
file, if any. Since not all Makefiles also support the LLVM toolchain, various options for
transforming supplied Makefiles should be further explored. Other limiting issues stem
from the limitations of the Loopus itself, which does not support some specific classes of
loops as well as more precise and sound analysis of heap-manipulating loops.

7.2.2 Dynamic Baseline

Dynamic baseline optimization is an iterative method that leverages metrics gathered from
previous collection runs (stored in the Dynamic Stats described in Section 7.1.2) of the same
command configuration, i.e. the collection command (profiled executable), its arguments
and workload — however, not necessarily the same optimization settings. In particular, the
method attempts to identify functions that can be omitted from subsequent profiling.

Parameters: soft_threshold Minimal number of func. 𝑓 calls when we start to check if 𝑓
has constant time behaviour.

hard_threshold Maximal number of allowed func. 𝑓 calls for profiling.
Resources: CGR (Required) To access the changed functions within the CG

and to lookup wrapper candidates.
Dynamic Stats (Required) To access the selected function metrics gathered

from the previous collections.
Output: CGR (Modified) To remove filtered and wrapped functions.
Phase: pre-optimize Detection and filtering process.

post-optimize Gathering of Dynamic Stats for next optimization.
Application Scope: large-scale Even for large-scale projects (unlike Static Baseline).
Primary OC: OC_T
Time Overhead: minimal Due to computation of Dynamic Stats.

Motivation and Overview. The Static Baseline method can identify how functions
should, in theory, perform in terms of a speed, and then filter out those that will potentially
not impact the performance at all. However, the upper bounds do not actually reflect how
functions really behave on the input configurations and workloads. A non-complex (e.g.
constant or linear) function can still be a considerable bottleneck if it exceeds order of
minutes, and, on the contrary a complex (e.g. exponential) function can be insignificant, if
the source of its complexity does not manifest at all. Hence, the Dynamic Baseline method
aims to complement the Static Baseline: by covering most of the same classes, while also
covering some additional ones. Note, that we ensure that the Dynamic Baseline can be
used as a standalone method — in situations when Static Baseline cannot be leveraged — or
as a complementary dynamic analysis that covers cases missed by the Static Baseline.

In particular, we utilize the Dynamic Stats resource to identify functions that have
a constant elapsed time behaviour during the common SUT usages. Note that, we limit
ourselves to detecting constant behaviour only, however, the method could be extended
by using the regression analysis module implemented within the Perun. Yet, we decided
to leverage the dynamic stats metrics and implement lightweight detection of constant
functions (as described in the Implementation Section) to minimize the time overhead —
which would otherwise be significantly higher if we exploited the least squares approach
(i.e., as utilized in the regression analysis module) — in exchange of lower expressive power.
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Moreover, we identified another use cases of Dynamic Stats. We can, e.g., filter out
functions that cross a hard call count threshold. We argue that functions with excessive
number of calls introduce significant overhead (the probe handling is a time-intensive op-
eration if performed frequently) as well as generate enormous volume of raw data. At last,
we detect the so-called wrapper functions, i.e. functions that only call one function with
minimal own overhead11. Naturally, it is generally sufficient to measure only the wrapper.

Implementation. We propose to implement the Dynamic Baseline as a generic function
that based on a list of filters removes functions from profiling. Algorithm 2 illustrates the
Dynamic Baseline method as a pseudocode, including all of the proposed filters.

Algorithm 2 Dynamic Baseline Function Filtering
Input: Dynamic Stats (𝑠𝑡𝑎𝑡𝑠) and the set of filtering functions (𝑐ℎ𝑒𝑐𝑘𝑠) to apply, e.g.

𝑐ℎ𝑒𝑐𝑘 ← [(𝑐𝑎𝑙𝑙_𝑙𝑖𝑚𝑖𝑡_𝑓𝑖𝑙𝑡𝑒𝑟, ℎ𝑎𝑟𝑑_𝑡ℎ𝑟), (𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑓𝑖𝑙𝑡𝑒𝑟, 𝑠𝑜𝑓𝑡_𝑡ℎ𝑟),
(𝑤𝑟𝑎𝑝𝑝𝑒𝑑_𝑓𝑖𝑙𝑡𝑒𝑟, 𝑤𝑟𝑎𝑝𝑝𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑟𝑎𝑡𝑖𝑜)].

Output: The set of functions (𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) to exclude from profiling.
1: procedure Filter(𝑠𝑡𝑎𝑡𝑠, 𝑐ℎ𝑒𝑐𝑘𝑠)
2: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑← ∅
3: for all 𝑓𝑢𝑛𝑐 in 𝑠𝑡𝑎𝑡𝑠 do
4: if 𝑓𝑢𝑛𝑐.𝑖𝑠_𝑐ℎ𝑎𝑛𝑔𝑒𝑑() then ◁ We obtain this indicator from the Diff Tracing.
5: continue
6: for all 𝑐ℎ𝑒𝑐𝑘, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 in 𝑐ℎ𝑒𝑐𝑘𝑠 do
7: if 𝑐ℎ𝑒𝑐𝑘(𝑠𝑡𝑎𝑡𝑠, 𝑓𝑢𝑛𝑐, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) then
8: 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑.𝑎𝑑𝑑(𝑓𝑢𝑛𝑐)
9: break

10: return 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

11: procedure Call_limit_filter(𝑠𝑡𝑎𝑡𝑠, 𝑓𝑢𝑛𝑐, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
12: return 𝑓𝑢𝑛𝑐.𝑐𝑎𝑙𝑙𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

13: procedure Constant_filter(𝑠𝑡𝑎𝑡𝑠, 𝑓𝑢𝑛𝑐, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
14: if 𝑓𝑢𝑛𝑐.𝑐𝑎𝑙𝑙𝑠 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
15: ◁ Compute the resolution and IQR ratio to determine if 𝑓𝑢𝑛𝑐 is constant.
16: 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛← 𝑓𝑢𝑛𝑐.𝑚𝑒𝑑𝑖𝑎𝑛 < 𝑚𝑒𝑑𝑖𝑎𝑛_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛
17: 𝑖𝑞𝑟_𝑟𝑎𝑡𝑖𝑜← 𝑓𝑢𝑛𝑐.𝑖𝑞𝑟 < 𝑓𝑢𝑛𝑐.𝑚𝑒𝑑𝑖𝑎𝑛 * 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡_𝑚𝑒𝑑𝑖𝑎𝑛_𝑟𝑎𝑡𝑖𝑜
18: return 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ∨ 𝑖𝑞𝑟_𝑟𝑎𝑡𝑖𝑜
19: return 𝐹𝑎𝑙𝑠𝑒
20: procedure Wrapped_filter(𝑠𝑡𝑎𝑡𝑠, 𝑓𝑢𝑛𝑐, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
21: ◁ Wrapper: function with a single callee 𝑓𝑢𝑛𝑐 that has the same number of calls.
22: for all 𝑤𝑟𝑎𝑝𝑝𝑒𝑟 in 𝑠𝑡𝑎𝑡𝑠.𝑓𝑖𝑛𝑑_𝑤𝑟𝑎𝑝𝑝𝑒𝑟𝑠(𝑓𝑢𝑛𝑐) do
23: if 𝑓𝑢𝑛𝑐.𝑚𝑒𝑑𝑖𝑎𝑛 < 𝑤𝑟𝑎𝑝𝑝𝑒𝑟.𝑚𝑒𝑑𝑖𝑎𝑛 * 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
24: return 𝐹𝑎𝑙𝑠𝑒
25: return 𝑇𝑟𝑢𝑒

For each previously measured function with computed statistics (in the 𝑠𝑡𝑎𝑡𝑠 resource),
we first check if it has been changed since the last project version12. We skip such functions,
since we emphasize that they must be measured in order to detect new performance changes.

11We can mention, e.g. several functions in the CCSDS codec used in evaluation in Section 8.2.2, which
contain switch that calls coding and encoding functions in either integer or floating point arithmetic.

12Note, that we obtain this indicator from the Diff Tracing method described in Section 7.2.4.
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The generic implementation of Dynamic Baseline ensures that it can be easily extended
with different filtering approaches based on the dynamic statistics. In its current imple-
mentation, we supply three filtering methods that correspond to the previously described
filtering mechanisms: call_limit_filter, constant_filter and wrapped_filter.

• call_limit_filter compares the approximate number of function calls13 (i.e., the
count statistics) with the user-supplied hard_threshold: if the threshold is exceeded,
the function is automatically filtered out.

• constant_filter compares the function calls (count) with the soft_threshold. In
case it is exceeded, we perform the lightweight check for constant functions as follows.
Using the constant_median_ratio, we verify if the IQR is a negligible fraction of the
median — which indicates that the potential slope of the linear function approximating
the elapsed-time behaviour (if we would construct such function) is below the set
limit, thus manifesting a constant-like behaviour — or if the median is below the
minimum median_resolution. Low median resolution implies that the used clock
precision (in the utilized collector) is too low to adequately measure the duration of
the function call (with respect to the introduced overhead and observational error)
and further performance modelling of the function would thus be significantly biased.
Note that this technique is an unsound heuristic that attempts to approximate partial
results (i.e., only for the constant functions at the moment) of the regression analysis
(moreover, since we work with dynamically obtained statistics, achieving soundness
is rather difficult). Figure 7.1 attempts to illustrate this concept. The values of the
internal parameters were experimentally chosen and adjusted based on the results
obtained from the evaluation projects (see Section 8.1), however, we plan to further
fine-tune the parameters based on additional future evaluation results. Note, that
this is complementary to the approach we proposed in [52] that identifies constant
functions based on the least square regression analysis.

Q3Q1

Median

IQR

call order

ca
ll 

du
ra

tio
n 

[s
]

function call

call order

ca
ll 

du
ra

tio
n 

[s
]

function call

Q3Q1

IQR

Median

Constant-like function Not Constant-like function

Figure 7.1: A comparison of constant (red) and non-constant (blue) behaviour. The idea
is to compare the IQR (interquartile range) and median values of the function’s data set:
when the 𝐼𝑄𝑅/𝑚𝑒𝑑𝑖𝑎𝑛 ratio is sufficiently small, we assume that the function is constant.

• wrapped_filter identifies (and filters) the wrapped functions as follows. We list all
callers of the analyzed function func and check that each has only a single callee
(func) with the same number of calls as the caller (wrapper) function. This in-
dicates direct control flow from the wrapper function to the func, e.g., no iterative
function calls in a cycle. Next, We compare median (see Dynamic Stats) of both the

13The number is approximated in case we use the call sampling.
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wrapper and the func. If 𝑓𝑢𝑛𝑐.𝑚𝑒𝑑𝑖𝑎𝑛 > 𝑤𝑟𝑎𝑝𝑝𝑒𝑟.𝑚𝑒𝑑𝑖𝑎𝑛*𝑤𝑟𝑎𝑝𝑝𝑒𝑟_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑟𝑎𝑡𝑖𝑜
holds, i.e. the func elapsed time is close to the wrapper duration (specified by the
parameter wrapper_threshold_ratio), we assume that the wrapper-func relation
holds. The intuition is the caller wrapper function performs minimal additional
performance-intensive computations. if the described constraints hold true for all
func’s callers, then the func is removed from the set of profiled functions.

Method Assessment. Dynamic Baseline is a universal optimization that can be success-
fully leveraged by projects of any size. Its lack of any requirements or dependencies makes
it a viable alternative for the Static Baseline in cases when its usage is limited. However,
the first iteration of the method (i.e., when a dynamic stats are not yet available) does
not provide any optimization itself. Hence, we generally recommend to employ additional
optimization methods for the first iteration.

One of the disadvantages is that functions excluded from profiling do not produce any
statistics and new project versions do not trigger a reset of the Dynamic Stats, so functions
excluded in the previous version will be still excluded in the new version. Thus, any
potential performance bug, introduced by a new version, in an excluded function will not be
detected (however, if the performance impact is severe, the slowdown will likely propagate
to a higher-level function which is not excluded). One can then use the Diff Tracing method
in combination with the Dynamic Baseline to solve this issue, as Diff Tracing guarantees
that functions identified as changed will not be excluded from profiling.

+ Universal iterative method with no ad-
ditional requirements or dependencies.

+ Precisely filters functions based on
metrics from the previous profilings.

- If dynamic stats are not available, the
first iteration filters nothing.

- Hard to handle function changes, since
disabled probes produce no metrics.

Future Work. The primary shortcoming of the Dynamic Baseline method is missing
built-in support for detecting function changes and subsequent automated re-enabling of the
corresponding function probes in order to gather updated metrics. Currently, this issue is
resolved either by a manual and user-triggered dynamic stats reset (thus forcing a collection
of new baseline metrics), or enabling the Diff Tracing alongside Dynamic Baseline.

7.2.3 Call Graph Shaping

The Call Graph Shaping is a family of static analysis methods that exploits the structure
of CG to identify and filter functions that are, e.g. more likely to be invoked more times
than the remaining functions. Namely, we introduce three distinct Call Graph Shaping ap-
proaches: top-down (Trimming), bottom-up (Pruning) and matching (Matching). We base
the approaches on the Assumption 7.1.1 (although it is mostly leveraged by the Trimming
method), and, hence, we focus only on estimating the assumed call count without the need
to measure (or at least approximate) the actual call count.
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Parameters: keep_top The number of top call graph levels, counted from the root,
that will be protected.

min_functions (Trimming) The minimum number of functions that have to
remain in the call graph after the trimming.

keep_leaf (Trimming) The flag whether leaf functions should be kept
in the remaining CG levels.

chain_length (Pruning) The maximal length of the pruning paths.
Resources: CGR (Required) To analyse the CG structure.
Output: CGR (Modified) Removed whole levels (trimming) or functions

(pruning) from the call graph.
Phase: pre-optimize Modifying the call graph structure.
Notable Trade-off: time-precision Significant reduction of profiling time at the cost of dimin-

ished precision of hotspots (less functions are probed).
Application Scope: large-scale
Primary OC: OC_CP
Time Overhead: minimal

Motivation and Overview. Estimating the real call count for each function using static
analysis is, indeed, a challenging task, but we believe we can achieve similar results by
leveraging the depth-based prediction (see Sec. 7.1.1) instead. In particular, we can use the
CGR of the SUT, and specifically its pre-calculated 𝜆𝐿 (level) property, as the base for the
depth-based predictor to over-approximate14 the assumed call counts. We can then use this
prediction to, e.g., remove top 𝑁 functions that have the highest predicted call count.

Generally, the Call Graph Shaping family of methods focuses on the CG structure and
depending on the specified depth either (a) cuts out whole levels in a top-down manner or
(b) filters specific functions in a bottom-up approach. The top-down approach (trimming)
cuts a portion of the CG below the given depth. On the other hand, the bottom-up
(pruning) approach traverses in reverse all the paths up to the depth length, starting from
the ⊥ functions (as defined in Section 5.1 in metric M_HC), and cuts all of the traversed
functions that are not in the protected levels (keep_top).

We implemented the top-down and bottom-up techniques as a separate Call Graph
Shaping modes called trimming and pruning, respectively.

Implementation of Trimming In this mode, we iterate the CG levels in a top-down
order up to the specified keep_top threshold and remove lower functions. Note that we
automatically remove the leaf functions as well, unless the keep_leaf parameter is set to
True; we argue (based on our prior experience with profiling numerous projects) that leaf
functions tend to be invoked more frequently than others, thus causing significant time
overhead and generating large volumes of raw performance data. Since the trimming is
implemented to keep at least min_functions remaining in the CG, we may keep some
functions below the specified keep_top threshold — in particular, we select functions based
on the reachable criterion, i.e. we select those that can reach most, unique functions,
since they are more likely to cover a performance bug. We propose to use two pre-defined
thresholds (keep_top) : soft and strict with the threshold being median (50%) and first
quartile (25%), respectively, of the total number of CG levels. The values were experi-
mentally chosen in order to achieve either severe or mediocre optimization by cutting up
to a total of 3⁄4 (strict), or 1⁄2 (soft) CG levels containing functions with the highest
assumed call count. The Algorithm 3 illustrates the trimming.

14The predictor assumes the worst-case, i.e., the longest path from the root node.
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Algorithm 3 Call Graph Trimming
Input: Call Graph 𝑐𝑔 and the remaining parameters are defined in the introductory Table.
Output: The 𝑡𝑟𝑖𝑚 set specifies functions that are excluded from profiling.

1: procedure Trim(𝑐𝑔, 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝, 𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠, 𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓)
2: 𝑘𝑒𝑒𝑝, 𝑡𝑟𝑖𝑚← ∅, ∅
3: ◁ Iteration starts from root node, i.e., 𝑙𝑒𝑣𝑒𝑙 = 0, 1, 2 . . . , 𝜔.
4: for all 𝑙𝑒𝑣𝑒𝑙 in 𝑐𝑔.𝑙𝑒𝑣𝑒𝑙𝑠 do
5: if 𝑙𝑒𝑣𝑒𝑙 ≤ 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝 then
6: ◁ Identify the leaf functions in the level, if necessary.
7: 𝑘 ← [𝑓 | 𝑓 ∈ 𝑙𝑒𝑣𝑒𝑙.𝑓𝑢𝑛𝑐𝑠 ∧ (𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓 ∨ ¬𝑓.𝑙𝑒𝑎𝑓)]
8: 𝑡← [𝑓 | 𝑓 ∈ 𝑙𝑒𝑣𝑒𝑙.𝑓𝑢𝑛𝑐𝑠 ∧ (¬𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓 ∧ 𝑓.𝑙𝑒𝑎𝑓)]
9: 𝑘𝑒𝑒𝑝, 𝑡𝑟𝑖𝑚← 𝑘𝑒𝑒𝑝 ∪ 𝑘, 𝑡𝑟𝑖𝑚 ∪ 𝑡

10: else
11: if |𝑘𝑒𝑒𝑝| < 𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 then
12: ◁ Select more functions to satisfy the 𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 condition.
13: 𝑓 ← 𝑠𝑜𝑟𝑡(𝑙𝑒𝑣𝑒𝑙.𝑓𝑢𝑛𝑐𝑠, 𝑘𝑒𝑦 = |𝑓.𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒|)
14: 𝑠𝑝𝑙𝑖𝑡_𝑎𝑡← 𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠− |𝑘𝑒𝑒𝑝|
15: 𝑘, 𝑡← 𝑓 [: 𝑠𝑝𝑙𝑖𝑡_𝑎𝑡], 𝑓 [𝑠𝑝𝑙𝑖𝑡_𝑎𝑡 :]
16: 𝑘𝑒𝑒𝑝, 𝑡𝑟𝑖𝑚← 𝑘𝑒𝑒𝑝 ∪ 𝑘, 𝑡𝑟𝑖𝑚 ∪ 𝑡
17: else
18: 𝑡𝑟𝑖𝑚← 𝑡𝑟𝑖𝑚 ∪ 𝑙𝑒𝑣𝑒𝑙.𝑓𝑢𝑛𝑐𝑠
19: return 𝑡𝑟𝑖𝑚

Implementation of Pruning. In this mode we instead iterate the ⊥ functions: starting
from each function 𝑓𝑖 ∈ ⊥, ∀𝑖 = 0, 1, . . . , |⊥| we generate consecutive sets 𝑆0

𝑖 , 𝑆
1
𝑖 , . . . , 𝑆

𝑘
𝑖

such that 𝑆0
𝑖 = {𝑓𝑖} and 𝑆𝑗

𝑖 = 𝑆𝑗−1
𝑖 ∪ {𝑔 | 𝑔 ∈ 𝑉𝐶𝐺 ∧ ∃ℎ : ℎ ∈ 𝑆𝑗−1

𝑖 ∧ (𝑔, ℎ) ∈ 𝐸𝐶𝐺}, ∀1 ≤
𝑗 ≤ 𝑘 = 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ. Informally, we construct sets of functions that can reach any ⊥
function in upmost chain_length unique calls.

Note, that we further employ both an upper (⊔ = 𝑓𝑖.𝑙𝑒𝑣𝑒𝑙+ 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ/2) and lower
(⊓ = 𝑓𝑖.𝑙𝑒𝑣𝑒𝑙 − 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ/2) limit for the caller level (i.e., ⊓ ≤ 𝑔𝑖.𝑙𝑒𝑣𝑒𝑙 ≤ ⊔ : ∀𝑔𝑖 ∈
𝑆𝑘
𝑖 −{𝑓𝑖}) to focus the pruning effect, which proved necessary for CGs with numerous loops

and large strong components — otherwise, pruning originating from a single bottom-level
function 𝑓𝑖 has the potential to remove a disproportionate number of functions even from
a distant CG sections (as experimentally tested on the CPython project). Moreover, we
use the keep_top parameter to prevent the pruning algorithm from removing functions
in the specified number of top call graph levels (since without such restriction, we could
potentially prune even the main function15). The resulting set of pruned functions thus
contains all functions from all paths up to the chain_length edges that terminate in some
⊥ function and also satisfy the upper, lower and keep_top level constraints.

Algorithm 4 Call Graph Pruning
Input: Call Graph 𝑐𝑔 and the remaining parameters are defined in the introductory Table.
Output: The 𝑝𝑟𝑢𝑛𝑒 set specifies functions that are excluded from profiling.

1: procedure Prune(𝑐𝑔, 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ, 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝)
2: 𝑝𝑟𝑢𝑛𝑒← ∅
15We want to keep some of the topmost functions to ensure we can cover the whole profiling with some

precision. Moreover, these are usually not called as often and hence they induce only a minimal overhead.
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3: ◁ Compute the bottom-level functions using the subsumption relation.
4: ⊥ ← {𝑓 | 𝑓 ∈ 𝑐𝑔.𝑓𝑢𝑛𝑐𝑠 ∧ ¬∃𝑓 ′ ∈ 𝑐𝑔.𝑓𝑢𝑛𝑐𝑠 : 𝑓 ′ ̸= 𝑓 ∧ 𝑓 ⊆ 𝑓 ′}
5: for all 𝑏𝑜𝑡 in ⊥ do
6: if 𝑏𝑜𝑡.𝑙𝑒𝑣𝑒𝑙 < 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝 then
7: continue
8: ◁ Compute the minimum and maximum level boundaries for the callers.
9: 𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙,𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙← 𝑏𝑜𝑡.𝑙𝑒𝑣𝑒𝑙+𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ/2, 𝑏𝑜𝑡.𝑙𝑒𝑣𝑒𝑙−𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ/2

10: 𝑝𝑟𝑢𝑛𝑒.𝑎𝑑𝑑(𝑏𝑜𝑡)
11: 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑙𝑖𝑠𝑡← [𝑏𝑜𝑡]
12: 𝑙𝑒𝑎𝑓_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← {𝑏𝑜𝑡}
13: ◁ Iterate all the (in)direct steps in the call chain.
14: for 𝑠𝑡𝑒𝑝← 0 to 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ− 1 do
15: 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠← ∅
16: ◁ Find all callers that satisfy the constraints.
17: for all 𝑓𝑢𝑛𝑐 in 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑙𝑖𝑠𝑡 do
18: 𝑐𝑎𝑙𝑙𝑒𝑟𝑠←{𝑐𝑎𝑙𝑙𝑒𝑟 | 𝑐𝑎𝑙𝑙𝑒𝑟 ∈ 𝑓𝑢𝑛𝑐.𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ∧ 𝑐𝑎𝑙𝑙𝑒𝑟 /∈ 𝑙𝑒𝑎𝑓_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∧

∧𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙 ≤ 𝑐𝑎𝑙𝑙𝑒𝑟.𝑙𝑒𝑣𝑒𝑙 ≤ 𝑚𝑎𝑥_𝑙𝑒𝑣𝑒𝑙 ∧
∧ 𝑐𝑎𝑙𝑙𝑒𝑟.𝑙𝑒𝑣𝑒𝑙 ≥ 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝}

19: 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠← 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ∪ 𝑐𝑎𝑙𝑙𝑒𝑟𝑠
20: 𝑝𝑟𝑢𝑛𝑒← 𝑝𝑟𝑢𝑛𝑒 ∪ 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠
21: 𝑙𝑒𝑎𝑓_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠← 𝑝𝑟𝑢𝑛𝑒 ∪ 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠
22: 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑙𝑖𝑠𝑡← 𝑠𝑡𝑒𝑝_𝑐𝑎𝑙𝑙𝑒𝑟𝑠
23: return 𝑝𝑟𝑢𝑛𝑒

Implementation of Matching. Finally, we also implement one additional mode: a sim-
ple Matching which does not modify the CG per se, but instead leverages it to filter out
unreachable functions (in the set of functions extracted from the collection strategies, see
Section 4.2) that would be otherwise needlessly instrumented. The Matching is, naturally,
by default applied even during the Trimming or Pruning modes, however, while they em-
ploy additional filtering, the Matching keeps the CG structure intact. In our experience,
even this simple restriction yields a considerable reduction of probes because lot of function
symbols (obtained from the symbol table) are external to the SUT or simply unreachable.
Consequently, a significant speed-up is achieved since the probe injection (i.e., instrumen-
tation) is a time-expensive operation which scales noticeably with the number of probes.

Method Assessment. The Call Graph Shaping method represents a rather different op-
timization approach compared to the Static or Dynamic Baseline, which exploit the statis-
tics and properties of functions. Instead of focusing on the complexities and filtering out
functions according to their (expected) performance behaviour, we predict which functions
are more likely to introduce significant overhead based solely on the structure of the CG.
Thanks to the various modes (trimming and pruning) and pre-defined parameters (strict
or soft), the method is considerably versatile in providing different degrees of optimization
(from slight to rather harsh ones) or restricting the scope of profiling to certain levels even
without the need for extensive manual configuration or combination with other methods.

+ Versatile, fast and effective technique;
can be utilized as a standalone method.

- Manual configuration can be somewhat
difficult due to the number of options.
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+ Broad range of effectiveness based on
its configuration (modes, parameters).

- Heavily relies on the CG levels estima-
tion; significantly inaccurate estimate
lead to inferior optimization results.

Future Work. We believe that the Call Graph Shaping family is currently in its final
state. However, future efforts could focus on designing additional pre-defined configurations
or fine-tuning the parameters, the default values and the parameter prediction process.

7.2.4 Diff Tracing

The Diff Tracing method is inspired by some of the recent applications of analysers (such
as FBInfer [18]) in CI of large code-bases. In particular, these approaches optimize the
analysis process for regular, day-to-day incremental updates to the project so that the
developers can promptly analyze the found issues of (only) the freshly introduced changes.
We propose we can achieve such precisely targeted optimization by leveraging the CG and
CFG resources, as well as exploiting the integration of VCS within the Perun that grants
us access to the project history and changes associated with specific project versions.

Parameters: keep_leaf The flag whether the changed leaf functions should also be
profiled; in default we omit them to minimize the overhead.

inspect_all The flag that turns on a deep analysis of changes, which
analyzes the whole CG.

cfg_mode Selected equivalence criterion (Soft, Semistrict, Strict) to
determine what is to be considered a change.

Resources: CGR (Required) To identify CGR changes in new project version.
CGR (old) (Required) To comparewith CGR (for some HEAD∼i version).

Output: CGR (Modified) With flagged changed functions so they will not
be removed by other optimizations (if used in combination
with other methods) or removed functions that have not
changed (if used as a standalone method).

Phase: pre-optimize
Notable Trade-off: time-overview Speedup at the cost of almost no top-level overview.
Application Scope: large-scale
Primary OC: OC_F
Time Overhead: minimal

Motivation and Overview. When Perun is used to continuously monitor the perfor-
mance of a project under development, it is usually not necessary to profile vast majority of
the functions within the program after each project update (e.g., new git commit). Many
of these updates usually have only a narrow impact in the code, and sometimes contain
only non-semantic changes (such as comments, variable renames, etc.). So instead, pre-
cisely pinpointing and profiling only functions directly (and, ideally, semantically) affected
by the latest changes is usually preferred by the developers, so that the performance may
be evaluated quickly. Moreover, the more fresh are the found changes, the higher is the
chance that developer is still in the context of the change and can fix the found error more
quickly; we argue, that the bug fix ratio is more important metric than bug finding ratio.

Hence we propose the Diff Tracing: a lightweight method that utilizes multiple indicators
to heuristically identify changes — (1) in the call graph structure, (2) in the function call or-
der, or (3) in the function source code — that can lead to a different assembly (e.g., ignoring
insignificant changes such as renaming variables, functions, comments, etc.). Specifically,
we first compare the project’s new CG with the previous one and detect new, removed,
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renamed or moved functions. Next, we (optionally) parse the source code differences be-
tween the two versions using the project VCS (using git diff ) and obtain intra-function
changes that cannot be analysed from the call graph perspective only. Finally, we employ
the CFG (as depicted in Figure 7.2) and check if these intra-function changes generated
different assembly code (based on the selected equivalence criterion), thus filtering changes
that have no impact on the behaviour or properties of the function. Note that this is an
unsound heuristic — as automated and sound analysis of semantic machine code change is
not a trivial task — and hence we restricted ourselves to pinpointing machine code changes,
without further introspection of their nature or impact.

Block   0x022088

0x00021d2f:   movsxd rax,  dword ptr  [r14 + 0xb4]
0x00022088:   xor eax,  eax
0x0002208a:   jmp 0x21d36

Block   0x021d26

0x00021d26:   cmp eax,  1
0x00021d29:   jne 0x220fa

Block   0x021d2f

Block   0x02282e

0x0002282e:   cmp eax,  1
0x00022831:   jne 0x229be

Block   0x022990Block   0x022837

HEAD~20 HEAD

0x00022837:   movsxd rax,  dword ptr  [r15 + 0xb4]
0x0002283e:   test        r12,  r12
0x00022841:   je           0x2299b

0x00022990:   xor  eax,  eax
0x00022992:   test r12,  r12
0x00022995:   jne  0x22847

Figure 7.2: A reconstruction of CFG segment found in specific CCSDS (see Section 8.1 for
more details) function across two different project versions, specifically HEAD and HEAD∼20.
As can be seen, both the CFG structure and basic blocks have changed since the bottom
vertices have more edges and ASM instructions.

The Diff Tracing method has two different modes: one for standalone usage and one for
its combination in pipelines (see Section 6.2.1). In the standalone mode, only the selected
functions (and main) are profiled; in the combined mode, the functions are marked to be
protected from removal by other optimizations ensuring they are always profiled.

Implementation. The Diff Tracing methods is, similarly to the Dynamic Baseline, im-
plemented in a generic way that handles a set of comparison functions, and thus can be
easily extended. In its current state, the method is supplied with three comparison functions
(designed to identify changed functions): Call Graph Comparison, VCS Difference and
CFG Comparison. The comparison functions are pipelined (not in the sense of optimization
pipelines introduced in Section 6.2.1), so that each subsequent comparison function refines
the output of the previous one. In the following, we will denote the VCS HEAD project ver-
sion as the current version and the HEAD∼i (i.e., the 𝑖-th previous version) as the baseline
version. Furthermore, we classify the detected changes as: (1) True Positive (TP) if the
function is classified as changed, and it indeed contains a change; (2) False Positive (FP)
if the function is classified as changed, while, in fact, it has not changed; (3) True Nega-
tive (TN) if the function is classified as not changed, and it, truly, contains no change; and
(4) False Negative (FN) if the function is classified as not changed, while the function
has actually changed.

Generally, we aim for zero FN since excluding changed functions from profiling may pre-
vent us from detecting newly introduced performance bug (although it might still manifest
in certain higher-level functions). The FP cases are much less severe, although still resulting
in (slightly) more time and memory overhead during the profiling.
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The supported comparison functions are implemented as follows:

1. Call Graph Comparison expects a CG of the current (cg_new) and the baseline
project version (cg_old), both loaded from the stats directory. Based on the differ-
ence of CG nodes only, we identify sets of new ({𝑓 | 𝑓 ∈ 𝑐𝑔_𝑛𝑒𝑤 ∧ 𝑓 /∈ 𝑐𝑔_𝑜𝑙𝑑}) and
removed ({𝑓 | 𝑓 ∈ 𝑐𝑔_𝑜𝑙𝑑 ∧ 𝑓 /∈ 𝑐𝑔_𝑛𝑒𝑤}) functions. From these sets, we can try to
estimate which functions were only renamed. We propose to compare the callers
and callees of each 𝑛𝑒𝑤𝑖 function with the callers and callees of each 𝑟𝑒𝑚𝑜𝑣𝑒𝑑𝑗
function to find matching 𝑛𝑒𝑤 and 𝑟𝑒𝑚𝑜𝑣𝑒𝑑 pairs — naturally we take other potential
renames into account as well (by sorting the node comparison according to their level).
Note that renamed functions are still checked for changes in the CFG comparison, as
we merely leverage the rename computation to map current CG nodes missing in the
baseline and vice versa. Furthermore, if the inspect_all is set, both the cg_new and
cg_old CG are fully traversed (i.e., vertex by vertex) and the caller and callee
sets of corresponding nodes are compared in order to find caller-callee differences,
which would indicate that the caller function has been changed.

2. VCS Difference algorithm takes the set of functions from the current CG (funcs)
and unique identification, such as git sha, of both compared versions (current_sha,
baseline_sha). Using the Perun VCS API we obtain the version difference in a VCS-
specific format — e.g., Listings 7.3 shows an example of the git diff output format.
We then attempt to parse the version difference output in order to retrieve valid
names (found in the funcs) of the changed functions regardless of the nature of the
changes, i.e., whether it affects the functions behaviour or not. Functions identified as
changed according to this approach are then further inspected in the CFG Comparison
step. As of now, the algorithm implements only Git-specific diff-parsing, however, the
algorithm can be easily extended to support multitude of other frequently used VCS.

Listing 7.3: An example of the git diff command output listing changes in the
sock_initobj function source code between two versions of the CPython project.
@@ -5091,9 +5091,8 @@ sock_initobj(PyObject *self, PyObject *args, PyObject *kwds)

}
memcpy(& in fo , PyBytes_AS_STRING( fdob j ) , s i z e o f ( i n f o ) ) ;

− i f ( PySys_Audit ( " socke t .__new__" , " O i i i " , s ,
− i n f o . iAddressFamily , i n f o . iSocketType ,
− i n f o . i P r o t o c o l ) < 0) {
+ i f ( PySys_Audit ( " socke t ( ) " , " i i i " , i n f o . iAddressFamily ,
+ i n f o . iSocketType , i n f o . i P r o t o c o l ) < 0) {

return −1;
}

3. CFG Comparison analyzes functions (funcs) from the previous step excluding new
functions and functions already marked as changed from the Call Graph Comparison
algorithm. For each such function, we retrieve its corresponding CFGs of the current
(cfg_new) and the baseline version (cfg_old). Next, we perform a quick check to
verify that the structure of the cfg_new and cfg_old is the same, without inspecting
the content of the nodes (the set of ASM instructions). If the graph structure matches,
we then compare the assembly of each matching node pair, i.e., (𝑉 𝑐𝑓𝑔_𝑛𝑒𝑤

𝑖 , 𝑉 𝑐𝑓𝑔_𝑜𝑙𝑑
𝑖 ),

using the selected equivalence criterion (cfg_mode). If the structure does not match,
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the function is classified as changed. Assume nodes 𝑛1, 𝑛2, and their respective sets of
instruction ℐ1, ℐ2; we will use ℐ𝑖𝑗 to denote set of instruction of type 𝑗 corresponding
to node 𝑛𝑖. Currently, we propose the following three criteria:

• Soft criterion: nodes 𝑛1 and 𝑛2 are considered to be equal when they contain
the same number of assembly instructions, i.e.

𝑛1 = 𝑛2 ⇔
∑︁
ℐ1 =

∑︁
ℐ2

While, this is rough and imprecise criterion, it still may be useful in cases where
the compiler reorders certain instructions (e.g., for optimization purposes) with-
out altering the behaviour in any way.

• Semi-strict criterion: 𝑛1, 𝑛2 are considered to be equal when they contain the
same number of assembly instructions of the same type, i.e.

𝑛1 = 𝑛2 ⇔
𝑙⋀︁

𝑘=0

∑︁
ℐ1𝑘 =

∑︁
ℐ2𝑘

Note, that we stil exclude the actual operands of the instructions. In our experi-
ence, the Semi-strict criterion offers a balanced TP and FP rate, since some of the
direct memory addressing operands may have been changed due to other changes
within the binary (e.g., by modifying the size of other memory segments) — hence
not altering the function behaviour despite different operands.

• Strict criterion for two CFG nodes 𝑛1, 𝑛2 is defined as follows:

𝑛1 = 𝑛2 ⇔
𝑙⋀︁

𝑘=0

ℐ1𝑘 = ℐ2𝑘

The Strict criterion, requires the instruction operands to match as well — with
one exception being the (un)conditional jump instructions. Since the destination
address of a jump instruction is likely to change while not altering the function
behaviour (as described in the Semi-strict criterion), and the destination can
be precisely obtained by the corresponding CFG edge, we decided to ignore the
destination operand of the jump instructions. This criterion boosts the TP ratio
(compared to the Semi-strict criterion) while also increasing the number of FN.
However, on the other hand, due to such thorough comparison, low amount of
FP are expected — mainly those caused by code changes external to the function
itself (e.g., changing a global constant variable or macro definition). Thus, the
Strict criterion is recommended when we strive to achieve low FP rates and the
increased number of FN is unimportant.

At the end, the Diff Tracing algorithm flags the corresponding functions from sets
new and modified as changed to ensure that they will be profiled. Note, that all of these
detections could be realized by more advanced and much more precise, sound methods (such
as, e.g., the DiffKemp project [41]), however, we believe that our lightweight heuristics can
still lead to suitable results for our proposes with minimal performance overhead.

Method Assessment. The Diff Tracing is the only method that targets the freshness
criterion and thus can ensure precisely directed — but narrow — performance profiling for
projects that employ some form of a VCS. To achieve better top-level performance overview
(compared to the standalone usage), combining the Diff Tracing with other optimization
methods is strongly advised. Moreover, thanks to the multiple implemented light-weight
equivalence criteria, we can achieve various degrees of precision for the change detection.
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+ Fast and precisely targeted profiling for
projects under active development.

+ Can achieve different true / false pos-
itive and negative rates thanks to the
variety of equivalence criteria.

+ Supports a standalone and combined
usage with slightly different behaviour.

- Does not provide sufficient top-level
performance overview of the whole pro-
gram in the standalone mode.

- Performance changes unrelated to the
function source code changes may not
be detected (e.g., different value of
global variable, changed macros, etc.).

Future Work. The semantic comparison of function is still an area under wide research,
where most approaches are not yet applicable in practice. Our method is based on a light-
weight principles and several fast heuristics, with much room for improvements. First,
the CFG comparison could be extended with more advanced detections, where only mod-
ifications severely impacting the performance would be considered (e.g. as some form of
instruction pattern matching could be utilized). Next, the Strict equivalence criterion could
be extended to semantically analyze the instructions and operands to detect changes in di-
rect memory addressing values which, however, do not alter the behaviour. Finally, we
could employ some more advanced (external) and precise analyser, such as diffkemp [41].

7.2.5 Dynamic Sampling

All of our previous methods were based mostly on the analysis of the code or the structure,
followed by filtering of profiled functions. Now, we move into a different area, where instead
we control how often the probes generate data (i.e., the sampling) or how often they are
active (i.e., the dynamic probe switching). We first propose Dynamic Sampling: an iterative
method that utilizes both the CGR and Dynamic Stats to optimize the data volume (OC_DV)
by automatically estimating the appropriate sampling for each function, so that adequate
amount of records is collected. That is, we want to prevent functions from over-generating
millions of records, yet keep sufficient amount of data records for any further and analyses.

Parameters: step The default estimation of the function sampling based on the
CG level 𝑓𝑙 of the function 𝑓 (𝑠𝑡𝑒𝑝𝑓𝑙).

threshold The desired amount of performance records per each function.
Resources: CGR (Required) To access the level and changed status of functions.

Dynamic Stats (Optional) To access the number of collected records.
Output: CGR (Modified) Updated the sampling of profiled functions.
Phase: pre-optimize Estimation of the sampling for each function.

post-optimize Gathering of the Dynamic Stats after the profiling is done.
Application Scope: large-scale
Primary OC: OC_DV
Time Overhead: minimal

Motivation and Overview. Generally, the Perun collectors support some form of data
sampling, i.e. they can store only every 𝑛-th raw performance record during the profiling
(we can list e.g. the specific (manually selected probes) and global (all of the probes)
sampling values implemented in the Tracer). However, so far neither of the specific sampling
configurations were particularly practical or effective — it is either too tedious to manually
configure the sampling for all the relevant functions, or too global, so, suitable only for
a certain subset of functions (while the others generate too few or too many records).
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Hence, the Dynamic Sampling solves this issue through automated, adaptive sampling
estimation for each function, individually. Specifically, each function is first assigned an
initial sampling estimate based on its level and the Assumption 7.1.1 (unless this initial
sampling is not already available, e.g., from previous profiling). In every subsequent method
iteration, we then further refine this estimate based on the Dynamic Stats, so that the
number of collected records for each function reaches the user-specified threshold, i.e., we
increase the sampling value for functions that are above the threshold and vice versa.

Implementation. The Dynamic Sampling algorithm is implemented in two phases: the
initial and refinement. Note that functions may pass different phases. For example,
new functions selected by the Diff Tracing will be assigned an initial sampling estimate,
while the previously profiled (and sampled) functions will have their sampling refined only.

1. The initial phase is activated when the Dynamic Stats (stats) are either not avail-
able (for the same profiling configuration) or does not contain statistics for the given
function, i.e., we have no information about the actual function call count. So, we
leverage the level property of the function and the step parameter to estimate the
sampling as 𝑠𝑎𝑚𝑝𝑙𝑒𝑓 = 𝑠𝑡𝑒𝑝𝑓.𝑙𝑒𝑣𝑒𝑙. The intuition is that w.r.t to the Assumption 7.1.1
functions with higher level estimates (where 𝑟𝑜𝑜𝑡 is level 0) are assumed to have
higher number of total function calls. Furthermore, we also exploit the inferred the-
oretical complexity to further multiplicate this estimate using a complexity-specific
coefficients. Currently, we set the coefficients to 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 2 and 𝑙𝑖𝑛𝑒𝑎𝑟 = 1.5
since functions with constant or linear complexity are, as per our previous experi-
ence, more likely to have higher call count. However, these coefficients have not been
thoroughly tested and as such, we plan to further fine-tune them in the future.

2. The refinement phase is activated when the given function has the corresponding
statistics in the stats and thus, we can leverage them to adjust the sampling ac-
cordingly. Specifically, we utilize the sampled_count and sample records which ex-
press the number of recorded function calls with the previous sampling configuration.
The refinement process consists of modifying the function sampling value according
to the formula 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(𝑠𝑎𝑚𝑝𝑙𝑒𝑜𝑙𝑑/(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡)) so that
the expected number of recorded calls is in close proximity of the threshold value,
i.e., within a small 𝜖 deviation (𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 ≈ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ± 𝜖) since exact match
is highly unlikely. For example, if 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10, 𝜖 = 2, 𝑠𝑎𝑚𝑝𝑙𝑒_𝑜𝑙𝑑 = 100 and
𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 = 20, then 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 = 𝑟𝑜𝑢𝑛𝑑(100/(10/20)) = 200 which should
result in 𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡 = 10± 2 during the next profiling.

Finally, the resulting sampling is further normalized to fit between the minimum and
maximum sampling range (i.e., 1 ≤ 𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑒𝑤 ≤ 𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒). Such normalization is
necessary, since the languages used to construct the collection programs usually employ
fixed-size types (such as uint32 or uint64). The sampling estimate then is assigned to the
profiled function within the CGR and the sampling itself is propagated to the collection
program assembling. The Algorithm 5 illustrates the whole Dynamic Sampling pseudocode.

Algorithm 5 Dynamic Sampling
Input: Call Graph 𝑐𝑔, Dynamic Stats 𝑠𝑡𝑎𝑡𝑠 and user-specified 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 parameter.
Output: Each profiled function has its 𝑠𝑎𝑚𝑝𝑙𝑒 property assigned.

1: procedure Set_sampling(𝑐𝑔, 𝑠𝑡𝑎𝑡𝑠, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

65



2: 𝑒𝑝𝑠← 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑒𝑝𝑠_𝑟𝑎𝑡𝑖𝑜
3: for all 𝑑𝑒𝑝𝑡ℎ, 𝑙𝑒𝑣𝑒𝑙 in 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒(𝑐𝑔.𝑙𝑒𝑣𝑒𝑙𝑠) do
4: for all 𝑓𝑢𝑛𝑐 in 𝑙𝑒𝑣𝑒𝑙 do
5: if 𝑓𝑢𝑛𝑐 not in 𝑠𝑡𝑎𝑡𝑠 then
6: ◁ The initial phase.
7: 𝑠𝑎𝑚𝑝𝑙𝑒← 𝑟𝑜𝑢𝑛𝑑(𝑠𝑡𝑒𝑝𝑑𝑒𝑝𝑡ℎ)
8: 𝑠𝑎𝑚𝑝𝑙𝑒← 𝑠𝑎𝑚𝑝𝑙𝑒 * 𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦_𝑟𝑎𝑡𝑖𝑜(𝑓𝑢𝑛𝑐.𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦)
9: else

10: ◁ The refinement phase.
11: 𝑐𝑎𝑙𝑙𝑠← 𝑠𝑡𝑎𝑡𝑠[𝑓𝑢𝑛𝑐].𝑠𝑎𝑚𝑝𝑙𝑒𝑑_𝑐𝑜𝑢𝑛𝑡
12: 𝑠𝑎𝑚𝑝𝑙𝑒← 𝑠𝑡𝑎𝑡𝑠[𝑓𝑢𝑛𝑐].𝑠𝑎𝑚𝑝𝑙𝑒
13: if not (𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑− 𝑒𝑝𝑠 ≤ 𝑐𝑎𝑙𝑙𝑠 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑+ 𝑒𝑝𝑠) then
14: ◁ Change the sampling so the calls are closer to the threshold.
15: 𝑠𝑎𝑚𝑝𝑙𝑒← 𝑟𝑜𝑢𝑛𝑑(𝑠𝑎𝑚𝑝𝑙𝑒/(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑/𝑐𝑎𝑙𝑙𝑠))

16: 𝑠𝑎𝑚𝑝𝑙𝑒← 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑖𝑛_𝑠𝑎𝑚𝑝𝑙𝑒,𝑚𝑎𝑥_𝑠𝑎𝑚𝑝𝑙𝑒)
17: 𝑓𝑢𝑛𝑐.𝑠𝑎𝑚𝑝𝑙𝑒← 𝑠𝑎𝑚𝑝𝑙𝑒

Method Assessment. The Dynamic Sampling is a simple and efficient method for reduc-
ing the amount of collected raw data. It extends the existing — albeit currently inefficient,
crude and impractical — technique of data volume reduction with an automated parameter
estimator, and thus making it easy to use without the need for extensive manual configu-
ration. However, often the algorithm might need a few iterations to sufficiently refine the
sampling, especially if the initial estimate is significantly inaccurate. Moreover, although
the sampling can greatly reduce the amount of generated data, the effect on profiling time
is usually negligible. The Tracer still has to inject all the probes, and each function call
still triggers the corresponding probe — the only difference is that in most cases, it does not
generate any data. Also, note that the sampling impacts the precision (quantifiable using
the 𝑅2) of the resulting complexity models, as fewer data are available.

+ Simple method that naturally extends
the already supported sampling.

+ Significant reduction of data volume
even without filtering collection points.

- Only negligible impact on the total
profiling time.

- The initial sampling estimation may
be considerably inaccurate, requiring
more refinement phases.

- Slight to significant impact on the pre-
cision of the performance models.

Future Work. In order to further enhance the Dynamic Sampling method, we propose
to focus the efforts towards improving the initial phase of the algorithm. Specifically, we
believe we could experiment with more advanced mathematical functions than the cur-
rently leveraged exponential progression (𝑠𝑡𝑒𝑝𝑙𝑒𝑣𝑒𝑙) which could yield more fitting initial
sampling distribution, especially for large-scale projects with up to hundreds CG levels.
Also, performing more thorough study with multiple test projects could lead to refining the
complexity ratios utilized in the initial phase.
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7.2.6 Timed Sampling

The Timed Sampling is a run-optimize method that, similarly to Dynamic Sampling, tunes
the sampling of collection probes to reduce the amount of generated data. However, com-
pared to the sampling of call count, when we store only every 𝑛-th generated performance
record, the Timed Sampling approach instead samples the data in the time domain, i.e. we
generate records only in the specified periodic intervals.

Parameters: frequency [Hz] The frequency of the probe deactivation (resp. reactivation).
Resources: None
Output: None
Limitations: eBPF Only eBPF supports the Timed Sampling method.
Phase: run-optimize
Application Scope: medium-scale Due to the eBPF limit of simultaneously attached probes.
Primary OC: OC_DV
Overhead: minimal

Motivation and Overview. In the Dynamic Sampling (see Section 7.2.5), we have
already stressed the motivation for adapting sampling techniques, their advantages and
disadvantages. However, although the sampling of the call count is already effective in
reducing the amount of resulting performance data, we suggest there may be an alternative
approach that can yield a different distribution of the sampled performance data.

The proposed Timed Sampling is rather straightforward: based on the user-supplied
frequency parameter, we alternate between gather and dormant profiling phases, where
the gather phase generates performance records and the dormant phase prevents the probes
from generating any data. Comparison of both approaches is illustrated on Figure 7.3.

1s 2s 3s 4s 5s 6s 7s 8s 9s
Profiling Time [s]

Dynamic
Sampling
[sample = 4]

Timed
Sampling
[freq = 1Hz]

Figure 7.3: An illustration of the different sampling approaches employed by the dynamic
and timed sampling — while Dynamic Sampling records only every 𝑛-th probe hit, the
Timed Sampling records all probe hits in a given time frame specified by the frequency.
Filled (resp. unfilled) points represent sampled (resp. missed) data.

Implementation. We proposed multiple candidate implementation approaches and ex-
amined their properties in terms of time overhead and performance data loss.

1. The initial prototype utilized a timer (in form of a separate periodic_thread) that
systematically triggered the gather and dormant phase changes. The phase change
would consist of (de)activating all of the injected probes at runtime, thus leveraging
the eBPF capability of dynamic probe attaching and detaching. However, regardless
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of whether we paused the profiled program (using the SIGSTOP signal) or kept it
running (as is done in the Dynamic Probing method), the mass (de)activation of all
the probes substantially impacted the time overhead and data loss — especially when
hundreds of probes were being used.

2. In the second attempt, we decided to incorporate the probe (de)activation mecha-
nism directly into the collection program: we implemented the timer as a standalone
perf_event probe attached to the CPU CLOCK software performance counter (see
Section 2.5.5) and set the tick frequency to the user-defined frequency. Then, when-
ever the probe is hit (i.e., the CPU CLOCK event is generated), it flips a boolean flag
(in the collection program) that signalizes the currently active phase. Every probe
handler (during the collection program assembly) then fetches the flag and, based on
the phase, either generates a performance record or terminates the probe handler.

Compared to the first implementation, the second approach showed only a negligible
performance data loss and time overhead (caused by the method itself). Hence, we decided
to leverage the second implementation for the final version of the Timed Sampling.

Method Assessment. The Timed Sampling method utilizes a sampling technique and
acts as a complementary method to the Dynamic Sampling. However, although both ap-
proaches target the same data volume optimization criterion (OC_DV), they differ in the
distribution of the sampled performance data. Specifically, the Dynamic Sampling method
samples the records uniformly for each function across the whole profiling run, whereas the
Timed Sampling method samples all of the functions into the given periodic time windows.

+ Straightforward method that does not
need any optimization resource or an
extensive user configuration.

+ An alternative to the Dynamic Sam-
pling method that noticeably reduces
the amount of data and generates a dif-
ferent output distribution.

- Reduces the profiling time only negli-
gibly since the probes are still being
triggered even in the dormant phase.

- Currently limited to the eBPF engine.

- Skews the resulting complexity models.

Future Work. The current implementation does not rely on any advanced runtime probe
manipulation, thus an additional effort should be made to decouple the Timed Sampling
implementation from the eBPF engine and generalize it to other engines and collectors.

7.2.7 Dynamic Probing

The Dynamic Probing is a method utilized in run-optimize phase and designed to continu-
ously monitor the call count of each function during the profiling, and subsequently disable
those collection points that reach a certain call count threshold. Note that deactivating an
attached probe at runtime is rather costly operation which can in some cases — according
to our experiments — cause a minor loss of raw performance data, possibly due to unhan-
dled probe triggers during the deactivation process. This method requires no optimization
resources at all, however, it is usable only if the underlying instrumentation framework sup-
ports the runtime (de)activation of the instrumented collection points (such as the eBPF).
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Parameters: threshold The number of function calls that triggers probe deactivation.
reattach The flag for enabling the reattach mode that periodically at-

tempts to reactivate the disabled probes.
Resources: None
Output: Probe IDs Periodical identification of probes to deactivate or reactivate.
Limitations: eBPF Only frameworks that support runtime (de)activation of probes.
Phase: run-optimize
Application Scope: medium-scale Due to current eBPF limit of simultaneously attached probes.
Primary OC: OC_T
Time Overhead: noticeable Due to costly periodic probe (de)activation.

Motivation and Overview. Although the pre-optimize methods are generally versatile
and efficient, there are situations when the optimizations either cannot be utilized (e.g.,
when the CGR may not be effectively obtained due to unsupported architecture type), or
the result is unsatisfactory (e.g., the heuristics employed in various optimization methods
fail). Hence, we propose a method that does not rely on any extracted resource. We believe,
such solution could provide a sensible alternative to the pre-optimize methods.

The Dynamic Probing technique exploits the capability of instrumentation frameworks
(such as the eBPF) to dynamically enable/disable probes at the runtime. Generally, we can
distinguish two variants: the detach and re-attach. The former, systematically counts the
number of probe hits and when it detects that the user-specified threshold has been reached
by some function, the corresponding probe is deactivated, thus generating no more data and
causing no further overhead. The latter works similarly, however, each deactivated probe is
also reactivated after a certain time interval. We propose to double this reactivation interval
every time the probe is deactivated again, so probes that generate significant amount of
data during the whole profiling stay deactivated for most of the time, while some may still
resume measuring after a brief deactivation (e.g., during a performance hotspot).

Implementation. Since the Dynamic Probing method runs during the profiling process,
we experimented with multiple candidate implementations in order to minimize its impact
on the profiling (e.g., noticeable increase of lost data records or slowdown of the profiling).

1. The first approach was eager: we check the amount of function calls for the given
function every time its corresponding probe is hit, and subsequently deactive it if the
threshold has been reached. However, the function used to store the generated raw
performance data is being invoked so often (up to millions of calls per second), this
caused a noticeable spike in the raw data loss16.

2. The second attempt was based on a dedicated thread (probing_thread) that would
periodically switch between a check and sleep phases. The thread performs no oper-
ations during the sleep phase, whereas during the check phase, the thread inspects
probe hit counters for all the functions at once — while the profiled program itself is
paused by the SIGSTOP signal (and later resumed using the SIGCONT signal). Although
this way the observed data loss has been slightly smaller, the duration of the program
has still notably increased. Moreover, it also led to a drawback that the probes were
not disabled immediately after reaching the threshold, but rather during the next
check phase since the threshold may be reached during the probing_thread sleep.

16Which, to the best of our knowledge, happens either (a) due to unhandled probe triggers since the eBPF
VM performs other operations, or (b) the internal kernel buffer is full, thus additional records are discarded.
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3. In the final implementation, we used an enhanced version of the dedicated thread.
First, we incorporated the Dynamic Probing code directly into the Tracer (specifically,
into the eBPF engine) to remove the additional layers of indirect function calls caused
by calling functions from other modules. Next, we decided not to utilize any kind
of program pausing — since according to our experiments, it causes more data loss
than simply letting the program run while the probing_thread is active. Finally,
we experimentally fine-tuned the duration of the thread sleep phase to balance the
amount of data loss, time overhead and probe deactivation delay. As a result, the
final implementation showed acceptable data loss rate and time overhead.

The re-attach is implemented on top of the detach mode: we extended the thread to
keep track of the deactivated probes as well as the time remaining to their reactivation —
each reactivation of the given probe location then doubles the future deactivation time.
Figure 7.4 depicts the probing_thread dedicated to inspecting the probe hit counters and
subsequently (de)activating any probe that hits the threshold number of calls. Moreover, it
also shows the interaction between the probing_thread and the eBPF profiling_thread
responsible for running the SUT and collecting raw performance data (see Section 6.1.1).

Profiling Thread

Profiled
Program

Probe 1

Probe 4

Probe 2

Probe 5

Probe 3

Probe 6

ProbingThread

Sleep Check Sleep SleepCheck

eBPF-related data

Raw data output

Probe Hit Counter

Probe Reactivate
Timers

Re-attach Mode

Update

CheckDeactivate and Reactivate
Probes

eBPF process

(threshold = 20)
10 40 0 85

1s 3s

Figure 7.4: An illustration of the probing and profiling threads and shared dynamic
structures. The profiling_thread performs the standard eBPF profiling operations such
as running the SUT, attaching/detaching probes and storing the raw performance data.
The probing_thread (active only when the Dynamic Probing is enabled), on the other
hand, periodically switches between the sleep and check phases, where it checks the probe
hit counts and deactivates (based on the threshold) or periodically reactivates probes.

Method Assessment. The Dynamic Probing is an attempt to design an alternative
to the pre-optimize methods that require various optimization resources which might not
always be obtainable. However, while it can precisely target the functions that generate the
most performance data and cause the most overhead (without needing the Dynamic Stats
as is the case with other precise methods), it is tightly linked to the underlying Tracer’s
engines. Specifically, it is currently only in the eBPF Tracer engine as a proof of concept,
since the SystemTap does not support such dynamic runtime probe (de)activation.

+ No resources needed, making it a viable
alternative to pre-optimize methods.

+ Precisely filters out the functions that
cause significant profiling overhead.

- Noticeable inherent overhead com-
pared to other methods.

- Currently implemented only as a proof
of concept in the eBPF engine.
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Future Work. The Dynamic Probing could be improved in two ways. First, additional
approach to implementation could be examined to further reduce the average performance
data loss and inherent time overhead. Second, the resulting implementation should not
be tightly coupled with the eBPF engine, but rather be a module of the optimization
architecture (see Section 6.2) so that other future engines or collectors can utilize it as well.

7.3 Proposed Optimization Pipelines
In order to optimize a profiling of a SUT, one usually does not employ individual opti-
mizations by themselves and instead wants to maximize the gain. Hence, we propose the
so called Optimization Pipelines: predefined sequences of configured optimizations. The
pipelines are intended as a quick solutions that require minimal to none additional manual
configuration, offer various degrees of precision and focus on different optimization criteria.

In total, we propose three pipelines within the Optimization architecture. Each pipeline
was designed specifically to offer a different optimization precision and subsequently com-
bines several of the optimization techniques using less strict modes and parameters.

7.3.1 Basic

pre-optimize

CGR CGR

CGR
CG Shaping

(Strict Trimming)
Dynamic 
Baseline
(Strict)

post-optimize

Dynamic Stats
computation

Dynamic Stats

Figure 7.5: A schematic overview of the Basic pipeline that utilizes the Call Graph
Shaping (in strict trimming mode) and Dynamic Baseline (in strict mode). The methods
leverage both the Call Graph Resource (CGR) and Dynamic Stats, however, since the
Dynamic Stats are computed after the profiling, it can be utilized only in the next profiling.

The Basic pipeline combines the Call Graph Shaping with the Dynamic Baseline: a sim-
ple but crude optimization approach. While Call Graph Shaping initially estimates and
filters potentially performance-intensive functions based on the structure of SUT (and thus
providing a significant speed-up of the first profiling run), Dynamic Baseline can further
refine this estimate in the subsequent runs and filter additional performance-intensive func-
tions. Hence, the Call Graph Shaping and Dynamic Baseline methods have an exceptional
synergy in minimizing the profiling time overhead (starting from the initial profiling run)
at the cost of diminished granularity.

We set the Call Graph Shaping to the strict trimming, i.e. we try to trim the CG levels
more aggressively, thus keeping less functions (specifically, the strict and soft modes keep
the top 25% and 50% of the CG levels, respectively). Moreover, we limit the threshold
parameter of the Dynamic Baseline to strict mode as well, to filter out more functions.
Since no additional optimization techniques are employed, we argue that using the strict
modes lowers the chance of any remaining function causing a massive time or memory
overhead (notably in the first profiling run), as the optimization is more aggressive and
less — potentially performance-intensive — functions are kept.
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Generally, the Basic pipeline is useful for an initial or overview profiling where only
a small subset of all the functions is profiled (namely the top-level functions closest to the
main function). This way, any possible performance changes will be detected and user will
obtain its rough location. Figure 7.5 schematically depicts the Basic pipeline.

Call Graph Shaping: Strict Trimming The trimming is limited to the top 25% CG levels.
Dynamic Baseline: Strict The soft_thr and hard_thr thresholds have lower values

in order to filter more functions.

+ Significant speedup and data volume
reduction while still keeping sufficient
top-level overview of the performance.

+ Requires only the CGR and Dynamic
Stats, otherwise no restriction as to the
used engine or collector.

- Filters out a large amount of functions,
thus resulting in inferior profiling pre-
cision compared to other pipelines.

7.3.2 Advanced
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CGR CGR CGR
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Dynamic
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CGR

Dynamic Stats

CGR
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Figure 7.6: A schematic illustration of the Advanced pipeline. Compared to the Basic
pipeline, both the Dynamic Baseline and Dynamic Sampling methods trigger the Dynamic
Stats computation in the post-optimize phase. Moreover, apart from the CGR, the Diff
Tracing method also leverages the CGR of the previously profiled project version.

The Advanced pipeline (Fig. 7.6) combines the Diff Tracing, Call Graph Shaping, Dy-
namic Baseline and Dynamic Sampling methods: a balanced combination in terms of pro-
filing time, data volume and profiling precision. Compared to the Basic pipeline, the Diff
Tracing method ensures that any previously filtered function 𝑓 will be profiled as soon
as we detect that 𝑓 has been changed in the latest project version. Since some profiled
functions might generate a disproportionately large volumes of raw performance data — as,
e.g., linear functions with call count below hard_thr will not be filtered by the Dynamic
Baseline — we further employ the sampling to control the amount of resulting raw data.

We run most of the methods in the soft mode in order to not filter out as many
functions. We argue that this softness is then mitigated by other methods in the pipeline.
Moreover, included Diff Tracing assures that the Advanced pipeline can be easily used to
optimize continuous profiling of projects under active development.

Diff Tracing: Semi-strict Two CFG nodes are considered equal if their corresponding
ASM instructions (excluding operands) are the same.

Call Graph Shaping: Soft Trimming The trimming is limited to the top 50% CG levels.
Dynamic Baseline: Soft Sets the soft_thr and hard_thr thresholds have higher val-

ues (compared to the strict mode) to filter less functions.
Dynamic Sampling: Soft The threshold has a higher value so less calls are sampled.
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+ Balanced profiling time, data volume
and profiling precision due to variety of
methods and the usage of soft modes.

+ Can reliably profile changes across dif-
ferent project versions.

- May not precisely localize subtle per-
formance changes caused by functions
within the lower 50% levels of the CG.

7.3.3 Full
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Figure 7.7: A schematic of the Full pipeline. Compared to the previous pipelines, the
Full pipeline also utilizes the run-optimize phase by including the Dynamic Probing.

The Full pipeline (Figure 7.7) utilizes almost all of the currently implemented optimiza-
tion methods: the Diff Tracing, Call Graph Shaping, Static Baseline, Dynamic Baseline,
Dynamic Sampling and Dynamic Probing. Note that we excluded the Timed Sampling from
the pipeline since the combination of Dynamic and Timed Sampling — although possible —
may result in too severe reduction of data volume. Compared to the previous pipelines,
the Full pipeline should filter out the least functions for profiling, thus generating the
most data and guarantee the best precision at the cost of increased profiling time. Note
that we achieve such behaviour mainly by selecting the appropriate modes (i.e., the least
optimization-aggressive ones) for each optimization technique, thus, contrary to the naïve
expectation: more optimization techniques ̸= more aggressive optimization, but rather more
optimization techniques = more optimization control.

Although the pipeline leverages methods that have additional requirements (e.g., the
source code) and limitations (e.g., the eBPF Tracer engine), it can still be used even if
those constraints are not satisfied by automatically switching the optimizations off.

Diff Tracing: Strict Two CFG nodes are considered equal if both the ASM instructions
and operands are the same in compared basic blocks (see Sec. 7.2.4).

Call Graph Shaping: Pruning The CG is pruned in a bottom-up manner.
Dynamic Baseline: Soft The soft_thr and hard_thr thresholds have higher values (com-

pared to the strict mode) in order to filter less functions.
Dynamic Sampling: Soft The threshold has higher value so that less calls are sampled.
Dynamic Probing: Detach The once deactivated probes stay disabled.

+ Complex combination of most of the
methods.

+ Easier to precisely locate performance
bugs, since more functions are profiled.

- Increased profiling time and data vol-
ume compared to the other pipelines.

- The full potential of pipelines at the
cost of requirements and limitations.
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Chapter 8

Experimental Evaluation

Overall, we have proposed seven optimizations and three pipelines. In order to evaluate
them properly, we designed a set of experimental configurations covering every method,
pipeline and most of their accompanying parameters (so called experimental cases). We
then conducted the experiments on both medium and large-scale projects, in particular, the
CCSDS [1], and CPython [11]. On each project we tested our implementation with respect
to the evaluation metrics introduced in Section 5.1. Based on the metrics’ values, we
conclude whether the proposed technique truly optimized the target optimization criteria
(see Section 5.2) and how significant the optimization is.

8.1 Methodology
We propose the following methodology for evaluating our set of optimizations. For the pur-
pose of the evaluation, we select (1) the so called experiment cases, i.e. a set of optimization
configurations (e.g., the enabled optimization methods and corresponding parameters), (2)
collector configurations, i.e. collector-related parameters (such as the collection engine and
caching mode), and (3) test projects, i.e. the profiled executable files and workload. Each
experiment then corresponds to one combination of experiment case, collector configuration
and test project.

Naturally, we run the whole set of experiments for each collector configuration multiple
times: specifically, each case is repeated six times, where the first measurement is discarded
(the warm-up) and the remaining five results are further considered1. So, in total, we run
for each project |𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟_𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑠|*|𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡_𝑐𝑎𝑠𝑒𝑠|*6 experiments. However,
note that not every test project supports all of the collector configurations, nor can every
collector (with given configuration) run all of the experiment cases (such as the Dynamic
Probing), hence, the number of obtained measurements can vary for each project.

Test projects. We selected two test projects. For each project we list its size of the
codebase, the workload we use to run the compiled executable, version we use as a baseline
for comparison (in Diff Tracing) and limitations that it imposes (if there are any).

1We are aware, that increasing the number of warm-ups and repetitions would lead to a better precision
of measurement. However, we believe, the proposed numbers are enough.
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CCSDS: Description An implementation of a CCSDS 122.0 [1] image compression stan-
dard that utilizes discrete wavelet transform coder and bitplane
encoder for lossless to lossy compression. The implementation
(although still under development) was provided to us by David
Bařina, Ph.D.

Size Medium-scale (10000+ C LoC, 164 functions).
Workload A grayscale Lenna.pgm image with 512× 512 pixels.
Diff Version HEAD˜20
Compilation The executable is compiled with -O3 optimization level.

CPython: Description CPython [11] is a reference implementation (written in the C lan-
guage) of the Python programming language, its compiler and in-
terpreter. For the purpose of evaluation, we used source-compiled
3.8 version with debug symbols.

Size Large-scale (500000+ C/C++ LoC, ≈ 6400 functions).
Workload A reference implementation of quicksort 2.
Diff Version CPython 3.7
Limitations CPython cannot be profiled by the eBPF engine since the eBPF

technology limits the number of probes that can be simultaneously
attached (and the number of functions within CPython greatly ex-
ceeds the imposed limit).

Collector configuration. For the collector configurations, we identified two key param-
eters that have significant impact on the resulting profiling: the engine (stap or ebpf) and
cache (on or off) — resulting in total of four combinations of parameters {(𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛),
(𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓), (𝑒𝑏𝑝𝑓, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛), (𝑒𝑏𝑝𝑓, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓)}.

Engine: Description Since Tracer is currently the only data collector within Perun that
exploits dynamic instrumentation, we evaluated the optimizations ex-
clusively using the Tracer and its engines.

Values {𝑠𝑡𝑎𝑝, 𝑒𝑏𝑝𝑓} for SystemTap/eBPF based profiling.
Cache: Description The impact of cache is twofold: (1) the SystemTap can cache compiled

scripts for significant speedup (however, eBPF has no such functional-
ity), and (2) the once extracted resources are stored within the Perun
internals and can be promptly retrieved without the need for repeated
extraction.

Values {𝑐𝑎𝑐ℎ𝑒_𝑜𝑛, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓} for (de)activating both the engine and opti-
mization cache at once.

Experiment cases. We created a set of experiment cases that cover all of the imple-
mented optimization methods as well as most of their parameters. Since evaluating all of
the parameter combinations is infeasible (mainly due to the time requirements for large-
scale projects), we carefully selected the tested parameters (and their combinations) based
on (1) how significantly it changes the method behaviour and (2) the expected severity of
impact it would have on the method results.

No Optimization
no-opt Data collection run; no optimizations enabled.

CG Shaping:
cg:m Matching mode of CG Shaping.
cg:p Pruning mode of CG Shaping.

2Taken from https://stackabuse.com/quicksort-in-python/
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cg:p-1 Pruning mode of CG Shaping; 𝑐𝑎𝑙𝑙_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ = 1.
cg:p-max Pruning mode of CG Shaping; 𝑐𝑎𝑙𝑙_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ = 1000, which effec-

tively prunes until 𝑘𝑒𝑒𝑝_𝑡𝑜𝑝 threshold is reached.
cg:t-s Trimming mode of CG Shaping; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑜𝑓𝑡.
cg:t-s:l Trimming mode of CG Shaping; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑜𝑓𝑡; 𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓 = 𝑡𝑟𝑢𝑒.
cg:t-r Trimming mode of CG Shaping; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑡𝑟𝑖𝑐𝑡.
cg:t-r:l Trimming mode of CG Shaping; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑡𝑟𝑖𝑐𝑡; 𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓 = 𝑡𝑟𝑢𝑒.

Static Baseline:
sb:c Filters constant functions using the Static Baseline method.
sb:l Filters linear functions using the Static Baseline method.
sb:q Filters quadratic functions using the Static Baseline method.

Dynamic Baseline:
db:s:<i> Iteration <i> of Dynamic Baseline; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑜𝑓𝑡.
db:r:<i> Iteration <i> of Dynamic Baseline; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑡𝑟𝑖𝑐𝑡.

Dynamic Sampling:
ds:d:<i> Iteration <i> of D. Sampling; no initial Dynamic Stats; default 𝑠𝑡𝑒𝑝 = 2.
ds:d:10:<i> Iteration <i> of D. Sampling; no initial Dynamic Stats; custom 𝑠𝑡𝑒𝑝 = 10.
ds:d:1.1:<i> Iteration <i> of D. Sampling; no initial Dynamic Stats; custom 𝑠𝑡𝑒𝑝 = 1.1.
ds:s:<i> Iteration <i> of D. Sampling; initial Dynamic Stats; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑜𝑓𝑡.
ds:r:<i> Iteration <i> of D. Sampling; initial Dynamic Stats; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑠𝑡𝑟𝑖𝑐𝑡.

Diff Tracing:
dt Default of Diff Tracing; semi-strict CFG comparison.
dt:l Diff Tracing; 𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑓 = 𝑡𝑟𝑢𝑒.
dt:i Diff Tracing; 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑎𝑙𝑙 = 𝑓𝑎𝑙𝑠𝑒; no CG comparison.
dt:s Diff Tracing; soft CFG comparison mode.
dt:r Diff Tracing; strict CFG comparison mode.

Dynamic Probing:
dp Default configuration of Dynamic Probing method; 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 100000;

re-attach mode off.
dp:l Dynamic Probing method; lower 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10000.
dp:h Dynamic Probing method; higher 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 1000000.
dp:r Dynamic Probing method; re-attach mode on.

Timed Sampling:
ts Default Timed Sampling configuration; 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 1𝐻𝑧.
ts:2 Timed Sampling; custom 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 2𝐻𝑧.
ts:4 Timed Sampling; custom 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = 4𝐻𝑧.

Note that for most iterative experiment cases (except ds:d:*) we use pre-computed
Dynamic Stats resource to save time and achieve more consistent results (since slightly
different Dynamic Stats may be obtained in each initial iteration of iterative methods).
Moreover, the Diff Tracing method utilizes results from the project version specified in the
Test projects table.

We also prepared a set of experiment cases for all of the proposed pipelines, however,
since pipelines consist of pre-defined configuration of methods and parameters, we tested
only their default behaviour with no additional manual alteration of parameters or methods.

Basic:
p:d:b The Basic pipeline with no computed Dynamic Stats resource.
p:b The Basic pipeline with pre-computed Dynamic Stats resource.

Advanced:
p:d:a The Advanced pipeline with no computed Dynamic Stats resource.
p:a The Advanced pipeline with pre-computed Dynamic Stats resource.

Full:
p:d:f The Full pipeline with no computed Dynamic Stats resource.
p:f The Full pipeline with pre-computed Dynamic Stats resource.
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Machine Specification. We conducted the experiments on a machine with the following
specification:

Arch x86_64
CPU i7-4600U 2.1GHz (3.3GHz Turbo), 2 Cores (4 Threads)
Cache 32K L1, 256K L2, 4096K L3
RAM 12GB
SSD 240GB SATA 3.0 6Gb/s

8.2 Evaluation Results
To simplify the presentation, we present only a limited subset of the results. The com-
plete set of results can be found in Appendices B and C. Specifically, we present selected
interesting results of both the CPython and CCSDS projects.

8.2.1 CPython Project Evaluation

We selected metrics (and their combinations) that, to the best of our knowledge, highlight
the most significant differences between our methods. Note, however, that CPython is rather
large-scale project that utilizes more advanced compilation pipeline, so, we were not able
to run some optimizations: the Static Baseline (due to its compilation process restrictions),
Dynamic Probing and Timed Sampling (due to their requirements of the eBPF engine that
currently does not support such large amount of probe locations). Hence, we evaluated the
CPython project using only the SystemTap configurations.

Impact on the profiling process. Figure 8.1 demonstrates how the number of in-
jected probes — both the instrumented (M_PL) and the actually reached during the profil-
ing (M_PLR) — affects the profiling (M_PT), collection (M_CPT) or program run (M_PRT) times
without any caching. For the no-opt case, the probe locations (i.e., functions) are obtained
using the Tracer strategies (see Section 4.2) which exploit the symbol table within the ex-
ecutable binary; the pre-optimize techniques rely on the extracted Call Graph structure
(leveraging the angr) and contains only functions reachable from the main function and
within the same executable (see Section 7.1.1). Note that the symbol table contains all of
the functions referenced in the executable and, since our extracted CG is quite limited, we
do not instrument certain reachable functions (e.g., functions outside of main or in external
libraries). We consider these functions as a perspective future work.

Naturally, although all of the instrumented functions in pre-optimize are reachable from
the main function, the actual number of reached probe locations (M_PLR) depends on the
introduced workload, thus creating the 𝑀_𝑃𝐿−𝑀_𝑃𝐿𝑅 gap. The second graph, shows
that the Program Run Time (M_PRT) is negligible compared to the Profiling (M_PT) or
Collect Phase (M_CPT) times, which is mainly a consequence of no caching: the collect
phase is influenced mostly by the probe injection (e.g., SystemTap script compilation),
and in the rest of the phases, the most time-intensive operations are (1) the extraction of
optimization resources, and (2) raw data parsing and transformation to the Perun profile
format. The dt:i case achieved the fastest profiling time out of all the optimization cases
since it also instrumented the least functions. The cg:m case, on the other hand, has not
only instrumented the most functions, but the cg matching also employs no other form of
optimization besides filtering functions that are not in the CG, thus generating the most
raw performance data which must be further parsed.
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Figure 8.1: Bar graphs that compare (1) the number of instrumented (M_PL) and actually
reached (M_PLR) probes (i.e., the total number of functions with probes versus the number
of probes that generated at least one performance record), and (2) the profiling (M_PT),
collect phase (M_CPT) and program run (M_PRT) times. We can see the number of instru-
mented probes contributes significantly, although not exclusively, to the overall runtime.
Thus, minimizing the number of probes can substantially shorten the profiling.

When, we set the cache_on configuration then both the Profiling Time and Collect
Phase Time are greatly reduced thanks to the cached results of SystemTap script compila-
tion and optimization resources extraction as is shown in Figure C.1.

Impact of the Raw Data Volume. Figure 8.2 shows how the volume of Raw Data
(M_RDV) influences the Profiling Time (M_PT) for every experiment case, as well as the
Hotspot Coverage (M_HC). Methods with low Raw Data Volume and high Hotspot Coverage
can precisely identify and filter out functions that generate considerable fraction of the total
raw performance data while having only minor effect on the performance information gain.

Note, that in the bottom graph, we have removed those experiment cases that employ
some kind of sampling. This is because the Hotspot Coverage computation currently ex-
cludes recursive function calls (as briefly described in 5.1) detected during the raw data
parsing, and since employing any sampling technique may render this detection process
impossible (as only the first call of the recursive sequence is recorded), the coverage values
obtained for such experiment cases are generally invalid, e.g., in the case of ds:*, p:f or
p:a. Full results are found in the Appendix B).

Moreover, we also decided to not include the no-opt case in both of the scatter plots, as
it considerably skews the graphs due to its rather large raw data and profiling time values
(approximately 1.2𝐺𝐵 of raw data and 1200𝑠 of profiling time). Note the majority of cg:*
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Figure 8.2: A relation between the Profiling Time (M_PT), Raw Data Volume (M_RDV) and
Hotspot Coverage (M_HC) metrics for most of the experiment cases. Generally, methods that
achieve short Profiling Time, low Raw Data Volume and high Hotspot Coverage should be
always preferred. Note that we excluded the no-opt case (its large values skew the graphs
considerably) from both graphs, as well as cases that employ any form of sampling (such as
ds:* or Advanced and Full pipelines) from the Hotspot Coverage scatter plot; the reason
being unreliable coverage computation (due to the record sampling) resulting in invalid
values. The full results can be found in the Appendix B).

cases which achieve a reasonable RDV / PT / HC ratios. However, the Hotspot Coverage, in
its current form, excludes the time spent in ⊥ functions which can cause imprecise results
(especially noticeable in the cg:m case).

Impact on performance modelling. Figure 8.3 shows how many functions we can
successfully analyze by the regression analysis (M_FC) and, in how many cases the resulting
best model is (un)reliable (denoted Obtained resp. Unclear). We say the model is reliable
if its 𝑅2 (coefficient of determination) is higher than 0.5, i.e., if the model can explain
at least half the observed error). Note that the 𝑀_𝑃𝐿𝑅 − 𝑀_𝐹𝐶 gap is caused by
reached functions that, have not met the requirements for regression analysis which expects
a minimum of three records (since the regression cannot be reliably applied to one or two
data points). Moreover, an extreme case of data sampling technique can cause the regression
analysis to fail altogether, as demonstrated by the Dynamic Sampling method (or Advanced
and Full pipelines) with no initial Dynamic Stats resource and large step parameter (i.e.,
cases with minimal to none M_FC records in Appendix B Tables). The other methods
seem to have no significant impact on the modelling precision, in comparison to no-opt
configuration.

8.2.2 CCSDS Project Evaluation

Contrary to the CPython, the CCSDS has no restrictions, and hence, we successfully measured
the all evaluation metrics for all collector configurations. Note, that the difference between
the cache_on and cache_off results was rather marginal, and, hence, we chose the results
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Figure 8.3: Numbers of function performance models that we can infer from data collected
by each case with (1) 𝑅2 ≥ 0.5 (Function Complexity Obtained), or (2) 𝑅2 < 0.5 (Function
Complexity Unclear). Functions with less than three records were omitted.

of cache_on configurations to evaluate the aforementioned methods as well as showcase the
differences between the SystemTap and eBPF Tracer engines.

Comparison of Tracer engines. Figure 8.4 compares the Profiling Time (M_PT) for both
the SystemTap and eBPF Tracer engines. We particularly compare the cases which were
not measured in the CPython evaluation (i.e., sb:*, dp:* and ts:*) as well as a selected
subset of the remaining methods and pipelines. Note, that due to the number of total
experiment cases, we filtered some of the cases for the sake of presentation. To be precise, we
removed subsequent iterations of iterative methods as the initial iteration provides sufficient
estimation of the method behaviour.

We noticed the considerable disparity in the Profiling Time of both engines, which is
caused by the fundamentally different instrumentation approach: while majority of the
SystemTap overhead is caused by the script to kernel module compilation, eBPF avoids
such time-expensive operation by dynamically attaching probes through its internal kernel
virtual machine. Although this introduces time overhead as well, it is not as significant as
the compilation process utilized by the SystemTap. Still, one has to consider that eBPF has
a hard limit on number of active probes, hence, both engines have complementary usage.

Impact of sampling on performance models. Figure 8.5 shows how certain methods
affect the 𝑅2 of linear and constant models, i.e. each point corresponds to a model of
a function and its 𝑅2 with or without optimizations. We believe this limitation is sensible,
since (1) to the best of our knowledge, the CCSDS implementation should mostly consist of
constant and linear functions anyway, and (2) both constant and linear models can be used
as a rough estimate of the data and, hence, their precision should not change significantly.
We show only selected optimizations that we believe cause the most significant difference
in the 𝑅2, specifically, the Dynamic Sampling, Dynamic Probing and Timed Sampling.

Ideally, the models should achieve a similar 𝑅2 for both the unoptimized and optimized
collection, and thus be located around the diagonal auxiliary line. In some cases (e.g.
the Dynamic Probing), the method actually yielded a more precise models in most cases.
However, as expected, the suspected methods have negatively impacted more than a half
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Figure 8.4: Comparison of the SystemTap and eBPF engine, featuring all of the methods
and pipelines, and a selected subset of the total experiment cases. Specifically, we kept only
the first iteration of every case since the values of subsequent iterations were rather similar.

of the function models, in both the constant and linear cases. Note, however, that even the
cases where a superior 𝑅2 values are achieved can lead to a negative outcome, especially
when such models are then considered to be the best fitting ones.
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Figure 8.5: A comparison of the 𝑅2 of constant (left) and linear (right) models with
(optimized) and without (unoptimized) optimizations. For the comparison, we selected
only the methods that were expected to significantly impact the modelling due to their
nature. We can see, that sampling has indeed negatively affected all the models’ quality.
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8.2.3 Summary

We have demonstrated our methods on a particular subset of results chosen for comparison
of the individual methods and pipelines with respect to a few carefully selected metrics.
Now, we summarize and evaluate all of the proposed techniques, with the focus on the
primary optimization criterion that is different for various methods.

Tables D.1 and D.2 in the Appendix D (to shorten the presentation) compare the M_PL,
M_PT, M_RDV and M_FC metrics of selected collector configurations for both test projects —
specifically, for each experiment case and selected metric, we evaluated by how much (in
%) has the observed metric changed. We summarize the results in Table 8.6 that evaluates
whether the individual methods are indeed capable of optimizing their primary optimization
criterion (as defined in Section 7.2), based on the achieved magnitude of change.

We conclude that most of the proposed optimization techniques proved to be effective in
reducing the number of collection points, speeding up the collection process or diminishing
the excessive amount of collected raw performance data. As the Diff Tracing method
employs a distinctive optimization approach, we were not able to properly quantify the
degree of optimization using a single metric, however, our results indeed show that certain
optimization of the observed metrics has been accomplished.

The Dynamic Probing method — although capable of achieving speed-up of the profiling
process — can also cause a slight slowdown when using inappropriate parameters for the
given test project. However, since the inherent overhead of the method decreases over time
(as more and more probes are being deactivated), we believe that for experiments with
longer Program Run Time (M_PRT), the method should show more promising results.

Table 8.6: A summary of all of the proposed and implemented individual optimization
techniques. The complete results can be found in Appendix D.

Method OC Change [Δ%] Verdict Note

CG Shaping: OC_CP 250% – 900% [CPython]
140% – 1400% [CCSDS]

3
Significant reduction of Collection Points
even for the match mode.

Static Baseline OC_T 50% – 70% [ebpf]
180% – 210% [stap]

3
Mediocre speed-up for both the System-
Tap and eBPF Tracer engines in CCSDS.

Dynamic Baseline OC_T 510% – 570% [CPython]
100% – 220% [CCSDS]

3
Mediocre speed-up which, however, de-
pends on the used engine.

Dynamic Sampling OC_DV 170% – 9𝑒5% [CPython]
80% – 2𝑒6% [CCSDS]

3
The Data Volume reduction is extremely
dependant on the initial step parameter.

Diff Tracing OC_F n/a 3

The OC_F is not easily quantifiable as
its optimization is different from the other
techniques, however, the PL, PT and RDV
metrics were all optimized while keeping
the FC ratio around the no-opt level.

Dynamic Probing OC_T −4% – 55% [ebpf]
[CCSDS]

3 / 7
The speed-up and overhead depend greatly
on the selected configuration.

Timed Sampling OC_DV 120% – 190% [ebpf]
[CCSDS]

3

Mediocre Data Volume reduction com-
pared to the Dynamic Sampling. The dis-
tribution of function call records can be
fine-tuned by its frequency parameter.
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Chapter 9

Conclusion

The goal of this work was to propose, implement and evaluate optimization techniques for
efficient performance analysis and modelling, as implemented in the Perun framework. In
particular, it focused on (1) improving the precision of data collection process, (2) reducing
the volume of the generated raw data and subsequently the size of the resulting profile, (3)
scaling down the amount of instrumented program locations, and (4) minimizing the time
overhead caused by the profiling.

First, we had to enhance both Perun and Tracer collector architecture to allow (a)
incorporating optimization routines within the Perun workflow and (b) leveraging both the
SystemTap and eBPF technologies using the Tracer. This extension allowed us to further
propose potential optimizations of profiling of projects with version control history.

We have noticed, that in general, the profiling could be optimized based on three ar-
eas: (i) semantic properties of profiled locations, (ii) structure of the SUT, and (iii) the
profiling process itself. We explored each of these and proposed several suitable techniques.
Specifically, the Static Baseline and Dynamic Baseline methods exploit static and dynamic
analysis of program functions and estimate their complexities: we then avoid profiling
functions that are expected to provide none to minimal information gain. Second, Call
Graph Shaping and Diff Tracing leverage the structure of CG and CFG, combined with
information about discovered machine code changes, to filter varying amount of functions
of different depths of call traces. At last, instead of deactivating some collection probes
completely, Dynamic Sampling, Timed Sampling and Dynamic Probing control how often
the instrumented probes generate performance data.

Now, while all of these optimizations can be, indeed, applied by themselves, we no-
ticed that there exist certain synergies between them, that make them suitable to be used
together. Hence, we introduced the concept of pipelines — pre-configured combinations of
optimization methods — to take advantage of these synergies.

Our experiments have demonstrated that nearly all of the proposed techniques and
pipelines have achieved encouraging results, i.e., significant degree of optimization, thus
making it possible to profile even otherwise infeasible scenarios and projects (e.g., Cpython).
Also, we were able to satisfy all of the stated Functional and Non-functional Requirements,
with the sole exception of maintainability, that we plan to resolve in the future.

We concluded each method with the potential future work, however, generally, extending
the Tracer to handle highly modular programs (e.g., with numerous shared libraries) could
push the profiling capabilities of Perun significantly further. Moreover, we plan to publish
the results achieved in this work at relevant conferences (e.g., ICST or ISSTA).
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Appendix A

Miscellaneous

Here we present various Tables and Listings that were not included in the Thesis Chapters,
mainly due to their scale and auxiliary nature, i.e., they are not fundamental for proper
understanding of the presented concepts, but rather aim to show some of the underlying
details.

Table A.1: The Command Line Interface (CLI) options of the new Tracer module, i.e.,
after introducing the engine architecture. Note that the engine option is related to the
concept of collection engines (introduced in Section 6.1).

-e --engine [stap | ebpf]
Sets the data collection engine to be used:
- stap: the SystemTap framework
- ebpf: the eBPF framework

-s --strategy [userspace | all | u_sampled | a_sampled | custom]
Select strategy for probing the binary. See documentation for detailed explana-
tion for each strategy. [required]

-f --func <func>
Set the probe point for the given function as <lib>#<func>#<sampling>.

-u --usdt <usdt>
Set the probe point for the given USDT as <lib>#<usdt>#<sampling>.

-d --dynamic <dynamic>
Set the probe point for the given code location as <lib>#<line>#<sampling>.

-g --global-sampling <int>
Set the global sample for all probes, sampling parameter for specific rules have
higher priority.

--with-usdt, --no-usdt <flag>
The selected strategy will also extract and profile USDT probes.

-b --binary <path>
The profiled executable. If not set, then the command is considered to be the
profiled executable and is used as a binary parameter.

-t --timeout <float>
Set time limit (in seconds) for the profiled command, i.e. the command will be
terminated after reaching the time limit. Useful for, e.g., endless commands.

-z --zip-temps <flag>
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Zip and compress the temporary files (SystemTap log, raw performance data,
watchdog log, etc.) into the Perun log directory before deleting them.

-k --keep-temps <flag>
Do not delete the temporary files in the file system.

-vt --verbose-trace <flag>
Set the trace file output to be more verbose, useful for debugging.

-q --quiet <flag>
Reduces the verbosity of the collector info messages.

-w --watchdog <flag>
Enable detailed logging of the whole collection process.

-o --output-handling [default | capture | suppress]
Sets the output handling of the profiled command:
- default: the output is displayed in the terminal
- capture: the output is being captured into a file as well as displayed in the
terminal (note that buffering causes a delay in the terminal output)

- suppress: redirects the output to the DEVNULL
-i --diagnostics <flag>

Enable detailed surveillance mode of the collector. The collector turns on de-
tailed logging (watchdog), verbose trace, capturing output etc. and stores the
logs and files in an archive (zip-temps) in order to provide as much diagnostic
data as possible for further inspection.

-sc --stap-cache-off <flag>
Disables the SystemTap caching of compiled scripts.

Table A.2: The new CLI options of the Perun collect command related to the optimiza-
tions, e.g., selecting the pipeline, enabling or disabling certain methods, setting parameters.

-op --optimization-pipeline [basic | advanced | full]
Pre-configured combinations of collection optimization methods.

-on --optimization-on <optimization name>
Enable the specified collection optimization method.

-off --optimization-off <optimization name>
Disable the specified collection optimization method.

-oa --optimization-args <parameter name> <parameter value>
Set parameter values for various optimizations.

--optimization-cache-off <flag>
Ignore cached optimization data (e.g., cached call graph).

--optimization-reset-cache <flag>
Remove the cached optimization resources and data.

Table A.3: The CLI of stats module consisting of several commands and numerous
options. Note that the stats module has an internal Python API as well, designed primarily
for more advanced usage by the developers.

Command: list-files
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Show stat files stored in the stats directory (.perun/stats/). This command
shows only a limited number of the most recent files by default. This can be,
however, changed by the --top and --from-minor options.
The default output format is ‘file size | minor version | file name’.

-N --top <int>
Show only stat files from top N minor versions. Show all results if set to 0. The
minor version to start at can be changed using --from-minor. [default: 20]

-m --from-minor <minor version>
Show stat files starting from a certain minor version (default is HEAD).

-i --no-minor <flag>
Do not show the minor version headers in the output.

-f --no-file-size <flag>
Do not show the size of each stat file.

-t --no-total-size <flag>
Do not show the total size of all the stat files combined.

-s --sort-by-size <flag>
Sort the files by size instead of the minor versions order.

Command: list-versions
Show minor versions stored as directories in the stats directory (.perun/stats/).
This command shows only a limited number of the most recent versions by de-
fault. This can be, however, changed by the --top and --from-minor options.
The default output format is ‘directory size | minor version | file count’.

-N --top <int>
Show only top N minor versions. Show all versions if set to 0. The minor ver-
sion to start at can be changed using --from-minor. [default: 20]

-m --from-minor <minor version>
Show minor versions starting from a certain minor version (default is HEAD).

-d --no-dir-size <flag>
Do not show the size of the version directory.

-f --no-file-count <flag>
Do not show the number of files in each version directory.

-t --no-total-size <flag>
Do not show the total size of all the versions combined.

-s --sort-by-size <flag>
Sort the versions by size instead of the minor versions order.

Command: sync
Synchronizes the actual contents of the stats directory with the internal ‘index’
file. The synchronization should be needed only rarely - mainly in cases when
the stats directory has been manually tampered with and some files or directo-
ries were created or deleted by a user.

Command: clean
Cleans the stats directory by synchronizing the internal state, deleting distin-
guishable custom files and directories (i.e. not all the custom made or manually
created files / directories can be identified as custom, e.g. when they comply
the correct format etc.) and by removing the empty minor version directories.

-c --keep-custom <flag>
The custom stats directories will not be removed.
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-e --keep-empty <flag>
The empty version directories will not be removed.

Command: delete file <NAME>
Deletes a stat file in either specific minor version or across all the minor ver-
sions in the stats directory.

-m --in-minor <minor version>
Delete the stats file in the specified minor version (HEAD if not specified) or
across all the minor versions if set to ‘.‘.

-k --keep-directory <flag>
Possibly empty directory of minor version will be kept in the file system.

Command: delete minor <VERSION>
Deletes the specified minor version directory in stats with all its content.

-k --keep-directory <flag>
Resulting empty directory of minor version will be kept in the file system.

Command: delete all
Deletes the whole content of the stats directory.

-k --keep-directory <flag>
Resulting empty directory of minor version will be kept in the file system.

Listing A.1: An example of a SystemTap script code featuring five probes, two functions
and enabled sampling. Each function has a matching pair of entry (call) and exit (return)
probes that measure the duration of each non-sampled function call. Note that the sampling
is implemented using a global array that is initialized during the startup of the profiled
program (the begin probe).
g l o b a l sample_array [ 2 ]

probe proce s s ( " cc sds / phase0 / compress " ) . begin {
sample_array [ 0 ] = 19
sample_array [ 1 ] = 19

p r i n t f ( " begin cc sds / phase0 / compress \n " )
}

probe proce s s ( " cc sds / phase0 / compress " ) . f unc t i on ( " BitDepthAC " ) . c a l l ? {
sample_array [ 0 ] ++
i f ( sample_array [ 0 ] == 20) {

p r i n t f ( " 0 %sBitDepthAC\n" , thread_indent (1 ) )
sample_array [ 0 ] = 0

}
}
probe proce s s ( " cc sds / phase0 / compress " ) . f unc t i on ( " BitDepthAC " ) . return? {

i f ( sample_array [ 0 ] == 0) {
p r i n t f ( " 1 %sBitDepthAC\n" , thread_indent (−1) )

}
}

probe proce s s ( " cc sds / phase0 / compress " ) . f unc t i on ( " BitDepthAC_Block " ) . c a l l ? {
sample_array [ 1 ] ++
i f ( sample_array [ 1 ] == 20) {

p r i n t f ( " 0 %sBitDepthAC_Block\n" , thread_indent (1 ) )
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sample_array [ 1 ] = 0
}

}
probe proce s s ( " cc sds / phase0 / compress " ) . f unc t i on ( " BitDepthAC_Block " ) . return? {

i f ( sample_array [ 1 ] == 0) {
p r i n t f ( " 1 %sBitDepthAC_Block\n" , thread_indent (−1) )

}
}

Listing A.2: An example of an eBPF collection program featuring two matching probes
for the entry and exit points of DitDepthAC function. Similarly to the SystemTap script, the
probe output is sampled. However, compared to the SystemTap, the eBPF program is more
complicated and requires usage of more internal data structures (BPF_ARRAY). Moreover,
the probe output is done by sending a duration_data structure with the raw data (the
function id, program pid, entry_ns time of the entry probe event and exit_ns time of
the exit probe event) through the BPF_PERF_OUTPUT which is then handled by the Python
interface and can be polled by the developer.
#include <l inux / sched . h> // f o r TASK_COMM_LEN
#include <uapi / l i nux / bpf_perf_event . h>

struct duration_data {
u32 id ;
u32 pid ;
u64 entry_ns ;
u64 exit_ns ;
char comm[TASK_COMM_LEN] ;

} ;

BPF_ARRAY( timestamps , u64 , 1) ;
// timed sampling sw i t ch omit ted
BPF_ARRAY( sampling , u32 , 1) ;
BPF_PERF_OUTPUT( reco rd s ) ;

int entry_BitDepthAC ( struct pt_regs ∗ctx )
{

// timed sampling code omit ted
u32 id = 0 ;

u32 ∗sample = sampling . lookup(&id ) ;
i f ( sample == NULL) {

return 0 ;
}

i f (∗sample == 0) {
u64 entry_timestamp = bpf_ktime_get_ns ( ) ;
timestamps . update(&id , &entry_timestamp ) ;

}

(∗sample )++;
i f (∗sample == 20) {

(∗sample ) = 0 ;
}

return 0 ;
}
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int exit_BitDepthAC ( struct pt_regs ∗ctx )
{

// timed sampling code omit ted
u64 exit_timestamp = bpf_ktime_get_ns ( ) ;
u32 id = 0 ;

u64 ∗entry_timestamp = timestamps . lookup(&id ) ;
i f ( entry_timestamp == NULL | | ∗entry_timestamp == 0) {

return 0 ;
}

struct duration_data data = {} ;
data . id = id ;
data . pid = bpf_get_current_pid_tgid ( ) ;
data . entry_ns = ∗entry_timestamp ;
data . exit_ns = exit_timestamp ;

(∗entry_timestamp ) = 0 ;

bpf_get_current_comm(&data . comm, s izeof ( data .comm) ) ;
r e co rd s . perf_submit ( ctx , &data , s izeof ( data ) ) ;

return 0 ;
}

Listing A.3: An example of a SystemTap raw data output that contains the records
generated by injected probes. Specifically each probe record contains the probe type (e.g.,
function entry = 0, function exit = 1, etc.), number of microseconds elapsed from the
top-most function entry (e.g., frame_dummy or main), the process name, pid and lastly, the
function name.
begin cc sds / phase0 / compress
0 0 compress (17462) : frame_dummy
0 23 compress (17462) : reg i s ter_tm_clones
1 30 compress (17462) : reg i s ter_tm_clones
1 32 compress (17462) : frame_dummy
0 0 compress (17462) : main
0 6 compress (17462) : frame_load_pgm
0 2511 compress (17462) : stream_skip_comment
1 2520 compress (17462) : stream_skip_comment
0 2526 compress (17462) : stream_skip_comment
1 2531 compress (17462) : stream_skip_comment
0 2535 compress (17462) : stream_skip_comment
1 2540 compress (17462) : stream_skip_comment
0 2544 compress (17462) : stream_skip_comment
1 2549 compress (17462) : stream_skip_comment
0 2553 compress (17462) : c e i l _ m u l t i p l e 8
1 2559 compress (17462) : c e i l _ m u l t i p l e 8
0 2563 compress (17462) : c e i l _ m u l t i p l e 8
1 2568 compress (17462) : c e i l _ m u l t i p l e 8
0 2584 compress (17462) : frame_read_pgm_data
0 2590 compress (17462) : c e i l _ m u l t i p l e 8
1 2596 compress (17462) : c e i l _ m u l t i p l e 8
0 2599 compress (17462) : c e i l _ m u l t i p l e 8
1 2605 compress (17462) : c e i l _ m u l t i p l e 8
1 3777 compress (17462) : frame_read_pgm_data
1 3786 compress (17462) : frame_load_pgm
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0 3789 compress (17462) : frame_dump

Listing A.4: An example of a raw data output from the eBPF engine that contains
records captured and stored by the Python eBPF process. Unlike the SystemTap, each line
represents a paired function entry and exit record: the process pid, the function id (instead
of a name), the entry point timestamp (in nanoseconds) and the inclusive duration of the
function call (in 𝑛𝑠).
18620 134 33156233850694 3815821
18620 128 33156237677393 619467
18620 148 33156238302007 4357
18620 98 33156238314380 9295248
18620 90 33156238310275 9303443
18620 129 33156248045668 553684
18620 87 33156248722397 2920
18620 135 33156247618424 4074280
18620 146 33156251699577 19552
18620 8 33156251732156 2991
18620 79 33156251751281 9583
18620 87 33156251809147 2458
18620 87 33156251879755 2023
18620 87 33156251948360 2035

Listing A.5: An example of a Perun profile resource obtained from transforming the raw
data of one particular record into a profile structure. Specifically, amount represents the
elapsed time of the first (call-order) function call (uid).
{

’amount ’: 2920,
’uid ’: ’BitDepthAC_Block ’,
’type ’: ’mixed ’,
’subtype ’: ’time delta ’,
’workload ’: ’ccsds / phase 0/data/ Lenna .pgm ’,
’thread ’: 18620,
’call -order ’: 0,

}

Listing A.6: An example of a runtime eBPF configuration passed to the eBPF collection
process spawned with elevated privileges. Generally, the configuration contains parameters
required by the process to correctly inject the instrumentation probes (e.g., the func dictio-
nary), run the profiled command (e.g., the command, program_file, timeout and others),
apply the run-optimize methods (optimizations and optimization_params) and store
the raw data output (data_file).
" binary ": " ccsds / phase 0/ compress ",
" command ": " ccsds / phase 0/ compress ./ phase 0/data/ Lenna .pgm",
" optimizations ": [’dynamic -probing ’],
" timeout ": null,
" program_file ": " ccsds /. perun /tmp/ trace / files / collect_program_ 2020-05-26-23-35-35_18

525.c",
" data_file ": " ccsds /. perun /tmp/ trace / files / collect_data_ 2020-05-26-23-35-35_18525.

txt",
" optimization_params ": {

"probing - threshold ": 100000,
"timed -sample -freq": 1,
"probing - reattach ": false
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},
"func": {

" BitDepthAC ": {
"type": "F",
" sample_index ": 0,
" sample ": 20,
"name": " BitDepthAC ",
"lib": null,
"pair": " BitDepthAC ",
"id": 0

},
" BitDepthAC_Block ": {

"type": "F",
" sample_index ": 1,
" sample ": 20,
"name": " BitDepthAC_Block ",
"lib": null,
"pair": " BitDepthAC_Block ",
"id": 1

},
}

Listing A.7: The documentation for Tracer Configuration class containing the necessary
Tracer parameters, as well as implementing the interface for the optimization module con-
sisting of get_functions, prune_functions, get_target and get_stats_name functions.
class Conf igurat ion :

" " " A c l a s s that s t o r e s the Tracer c o n f i g u r a t i o n provided by the CLI .

: i v a r Probes probes : the c o l l e c t i o n probes c o n f i g u r a t i o n
: i v a r bool keep_temps : keep the temporary f i l e s a f t e r the c o l l e c t i o n i s

f i n i s h e d
: i v a r bool zip_temps : z ip and s t o r e the temporary f i l e s b e f o r e they are

de l e t ed
: i v a r bool verbose_trace : the raw performance data c o l l e c t e d w i l l be more

verbose
: i v a r bool qu i e t : the c o l l e c t i o n pr og r e s s output w i l l be l e s s verbose
: i v a r bool watchdog : enab l e s d e t a i l e d l ogg ing during the c o l l e c t i o n
: i v a r bool d i a g n o s t i c s : enab l e s d e t a i l e d s u r v e i l l a n c e mode o f the c o l l e c t o r
: i v a r OutputHandling output_handling : s t o r e or d i s ca rd the p r o f i l i n g

command stdout and s t d e r r
: i v a r Co l l ec tEng ine eng ine : the c o l l e c t i o n engine to be used , e . g .

SystemTap or eBPF
: i v a r f l o a t or None timeout : the timeout f o r the p r o f i l e d command or None

i f i n d e f i n i t e
: i v a r s t r binary : the path to the binary f i l e to be probed
: i v a r Executable executab l e : the Executable o b j e c t conta in ing the p r o f i l e d

command , args , e t c .
: i v a r s t r timestamp : the time o f the c o l l e c t i o n s t a r t
: i v a r i n t pid : the PID o f the Tracer p roce s s
: i v a r s t r f i l e s _ d i r : the d i r e c t o r y path o f the temporary f i l e s
: i v a r s t r l ocks_d i r : the d i r e c t o r y path o f the l ock f i l e s
" " "

def __init__ ( s e l f , executable , ∗∗ c l i _ c o n f i g ) :
" " " Constructs the Conf igurat ion o b j e c t from the supp l i ed CLI c o n f i g u r a t i o n
" " "

def eng ine_factory ( s e l f ) :
" " " I n s t a n t i a t e s the eng ine o b j e c t based on the s t r i n g r e p r e s e n t a t i o n .
" " "
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def get_funct ions ( s e l f ) :
" " " Access the c o n f i g u r a t i o n o f the func t i on probes
" " "

def prune_funct ions ( s e l f , remaining ) :
" " " Remove func t i on probes not pre sent in the ’ remaining ’ s e t from the

ins t rumentat ion
" " "

def get_target ( s e l f ) :
" " " Obtain the t a r g e t executab l e f i l e .
" " "

def get_stats_name ( s e l f , s p e c i f i e r=None ) :
" " " Create a ’ s t a t s ’ f i l e name based on the s p e c i f i e r .
" " "

Table A.4: A list of the optimization parameters that can be supplied by the -oa CLI
option to change the parameters of various optimization methods. For each parameter, we
list the corresponding method, default value and the prediction process, if any.

Constants
𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠_𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑣𝑒𝑠 = 20
𝑡𝑜𝑝_𝑠𝑡𝑎𝑡𝑖𝑐_𝑟𝑎𝑡𝑖𝑜 = 0.1
𝑡𝑜𝑝_𝑝𝑟𝑢𝑛𝑒_𝑟𝑎𝑡𝑖𝑜 = 0.1
𝑡𝑜𝑝_𝑠𝑡𝑟𝑖𝑐𝑡_𝑟𝑎𝑡𝑖𝑜 = 0.25
𝑡𝑜𝑝_𝑠𝑜𝑓𝑡_𝑟𝑎𝑡𝑖𝑜 = 0.5
𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑘𝑒𝑒𝑝_𝑡𝑜𝑝 = 1
𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ_𝑟𝑎𝑡𝑖𝑜 = 0.1
𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ = 1
𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙𝑠 = 2
𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠_𝑟𝑎𝑡𝑖𝑜 = 0.1
𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = 10
𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑠𝑡𝑒𝑝 = 2
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑜𝑓𝑡_𝑏𝑎𝑠𝑒 = 10000
𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑡𝑟𝑖𝑐𝑡_𝑏𝑎𝑠𝑒 = 1000
ℎ𝑎𝑟𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 100
𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 100000
𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 0.2

diff-keep-leaf
Methods: Diff Tracing
Default: False
Predict: True ⇔ |𝑝𝑟𝑜𝑏𝑒𝑑_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠| <= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠_𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑣𝑒𝑠

diff-inspect-all
Methods: Diff Tracing
Default: True

diff-cfg-mode
Methods: Diff Tracing
Default: Semistrict
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Predict: Soft ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐵𝑎𝑠𝑖𝑐
Semistrict ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑
Strict ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐹𝑢𝑙𝑙

source-files
Methods: Static Baseline
Default: .c files extracted from the directory (recursively) containing the pro-

filed executable.
source-dirs

Methods: Static Baseline
Default: The directory containing the profiled executable.

static-complexity
Methods: Static Baseline
Default: Constant

static-keep-top
Methods: Static Baseline
Default: 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑘𝑒𝑒𝑝_𝑡𝑜𝑝
Predict: 𝑚𝑎𝑥(𝑐𝑔.𝑑𝑒𝑝𝑡ℎ * 𝑡𝑜𝑝_𝑠𝑡𝑎𝑡𝑖𝑐_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑘𝑒𝑒𝑝_𝑡𝑜𝑝)

cg-mode
Methods: Call Graph Shaping
Default: Match
Predict: Strict ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐵𝑎𝑠𝑖𝑐

Soft ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑
Prune ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐹𝑢𝑙𝑙

cg-keep-top
Methods: Call Graph Shaping
Default: 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙𝑠
Predict: 𝑚𝑎𝑥(𝑐𝑔.𝑑𝑒𝑝𝑡ℎ * 𝑡𝑜𝑝_𝑝𝑟𝑢𝑛𝑒_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙𝑠) ⇔ 𝑐𝑔_𝑚𝑜𝑑𝑒 = 𝑃𝑟𝑢𝑛𝑒

𝑚𝑎𝑥(𝑐𝑔.𝑑𝑒𝑝𝑡ℎ * 𝑡𝑜𝑝_𝑠𝑡𝑟𝑖𝑐𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙𝑠) ⇔ 𝑐𝑔_𝑚𝑜𝑑𝑒 = 𝑆𝑡𝑟𝑖𝑐𝑡

𝑚𝑎𝑥(𝑐𝑔.𝑑𝑒𝑝𝑡ℎ * 𝑡𝑜𝑝_𝑠𝑜𝑓𝑡_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑙𝑒𝑣𝑒𝑙𝑠) ⇔ 𝑐𝑔_𝑚𝑜𝑑𝑒 = 𝑆𝑜𝑓𝑡

cg-trim-min-functions
Methods: Call Graph Trimming
Default: 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠
Predict: 𝑚𝑎𝑥(|𝑝𝑟𝑜𝑏𝑒𝑑_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠| *𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑚𝑖𝑛_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠)

cg-trim-keep-leaf
Methods: Call Graph Trimming
Default: False
Predict: True ⇔ |𝑝𝑟𝑜𝑏𝑒𝑑_𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠| <= 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠_𝑘𝑒𝑒𝑝_𝑙𝑒𝑎𝑣𝑒𝑠

cg-prune-chain-length
Methods: Call Graph Pruning
Default: 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ
Predict: 𝑚𝑎𝑥(𝑐𝑔.𝑑𝑒𝑝𝑡ℎ * 𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ_𝑟𝑎𝑡𝑖𝑜, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑐ℎ𝑎𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ)

dyn-sample-step
Methods: Dynamic Sampling
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Default: 𝑑𝑒𝑓𝑎𝑢𝑙𝑡_𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑠𝑡𝑒𝑝
dyn-sample-threshold

Methods: Dynamic Sampling
Default: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑜𝑓𝑡_𝑏𝑎𝑠𝑒
Predict: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑡𝑟𝑖𝑐𝑡_𝑏𝑎𝑠𝑒 ⇔ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑚𝑜𝑑𝑒 = 𝑆𝑡𝑟𝑖𝑐𝑡

probing-threshold
Methods: Dynamic Probing
Default: 𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
Predict: 𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 * 𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ⇔ 𝑝𝑟𝑜𝑏𝑖𝑛𝑔_𝑟𝑒𝑎𝑡𝑡𝑎𝑐ℎ = 𝑇𝑟𝑢𝑒

probing-reattach
Methods: Dynamic Probing
Default: False

timed-sample-freq
Methods: Timed Sampling
Default: 1

dyn-base-soft-threshold
Methods: Dynamic Baseline
Default: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑜𝑓𝑡_𝑏𝑎𝑠𝑒
Predict: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑡𝑟𝑖𝑐𝑡_𝑏𝑎𝑠𝑒 ⇔ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑚𝑜𝑑𝑒 = 𝑆𝑡𝑟𝑖𝑐𝑡

dyn-base-hard-threshold
Methods: Dynamic Baseline
Default: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑜𝑓𝑡_𝑏𝑎𝑠𝑒 * ℎ𝑎𝑟𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡
Predict: 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑠𝑡𝑟𝑖𝑐𝑡_𝑏𝑎𝑠𝑒 * ℎ𝑎𝑟𝑑_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 ⇔ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑_𝑚𝑜𝑑𝑒 = 𝑆𝑡𝑟𝑖𝑐𝑡

threshold-mode
Methods: Dynamic Sampling, Dynamic Baseline
Default: Soft
Predict: Strict ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐵𝑎𝑠𝑖𝑐

Soft ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐴𝑑𝑣𝑎𝑛𝑐𝑒𝑑
Soft ⇔ 𝑝𝑖𝑝𝑒𝑙𝑖𝑛𝑒 = 𝐹𝑢𝑙𝑙
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Appendix B

Evaluation Tables

Here we present the tabulated results that were obtained in the evaluation phase. The
results are divided into separate Tables according to the test projects, collector configuration
and experiment cases grouped by the methods (see Section 8.1). Note that the column
names refer to the evaluation metrics introduced in Section 5.1, where FC [c, l, lg, q, p,
e] represents the amount of functions classified as constant, linear, logarithmic, quadratic,
power or exponential by the regression analysis. Similarly, FC [u] counts the number of
functions classified as unclear, i.e., where the coefficient of determination: 𝑟2 < 0.5 for all
supported model types.

Moreover, note that the TLC and HC values can, in some situations, exceed 100%
or reach exactly 0%, respectively. The reason being a SystemTap glitch that causes raw
data corruption in the output file — specifically, a duplicated blocks of records — when the
collection records are generated too fast for SystemTap to handle. Thus, certain func-
tions have more profiling records than actual function calls, resulting in skewed total time
computation and, subsequently, invalid coverage percentage.

The Tables are presented in the following order:

1. CPython: {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓}

2. CPython: {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛}

3. CCSDS: {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓}

4. CCSDS: {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛}

5. CCSDS: {𝑒𝑏𝑝𝑓, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓}

6. CCSDS: {𝑒𝑏𝑝𝑓, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛}

where each segment contains five to eight tables according to the number of evalu-
ated methods (note that not all configurations are able to run every method due to some
limitations imposed by certain methods).
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Appendix C

Evaluation Graphs

In this Appendix we present some of the evaluation plots and graphs that have been omitted
from the evaluation Chapter 8 due to the space limitations.
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Figure C.1: Comparison of the PT, CPT and PRT metrics for both 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓 and 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛
configurations of the CPython project. Note that the Dynamic Baseline technique does not
benefit from the caching technique nearly as much as other methods. The reason lies
in the dynamic nature of the method — although we use pre-computed initial Dynamic
Stats resource (so that the results are comparable), each subsequent iteration of Dynamic
Baseline method usually achieves unique results (caused by the system interference) which
translates to slightly different SystemTap scripts, thus the whole compilation process must
be performed (instead of loading a cached kernel module).
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Figure C.2: An illustration of the Optimization Overhead (OO) and the duration of Opti-
mization Resource Extraction (ORE) in the 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓 configuration and CPython project.
It is evident that the optimization overhead itself is negligible compared to the time re-
quirements of resource extraction. However, note the increased OO values in p:f and p:d:f
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Figure C.3: A complementary Figure to the Figure C.2 that shows the same OO and
ORE metrics, however, measured with the 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛 configuration. Note especially the
significant reduction of ORE values.
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Figure C.4: In Section 8.1, we have explained the employed methodology for the exper-
imental evaluation, and especially the technique of aggregating the results from multiple
runs into a single median value. However, we were also interested in examining the spread
of the results obtained in individual runs. Thus, we created several Box plots that show
the median, first quartile, third quartile, minimum and maximum values for various met-
rics. Since the different box plot values can be hardly seen, we conclude that the Tracer
collection process is surprisingly reliable in terms of consistent results.
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Figure C.5: Similarly to the Profiling Time (PT) results in the previous box plot C.4,
also the variance of Raw Data Volume (RDV) is extremely low — however, such behaviour
is expected, and as such, this Figure is more of a sanity check.
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Figure C.6: Compared to the previous two box plots, the Optimization Overhead (OO)
may seem to show much more varying results, which can be, however, upon closer inspection
explained by the notably more detailed scale on the Y axis.
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Appendix D

Comparison Tables

Here we present the full comparison Tables that compare the M_PL, M_PT, M_RDV
and M_FC values for non-optimized collection and a majority of the experiment cases (ex-
cluding only the subsequent iteration steps of iterative methods). Note that ∆% represents
by how much % has the metric been improved compared to the no-opt case.

Table D.1: Comparison of the selected metrics for the {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓} and
{𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛} configurations of the CPython evaluation results.

Method SystemTap: cache off SystemTap: cache on
PL [Δ%] PT [Δ%] RDV [Δ%] FC [%] PL [Δ%] PT [Δ%] RDV [Δ%] FC [%]

no-opt 0.0 0.0 0.0 51.6 0.0 0.0 0.0 49.8
cg:m 259.2 343.6 77.6 56.2 259.2 127.7 74.4 55.2
cg:p 425.6 777.2 466.3 49.0 425.6 726.6 454.3 49.0
cg:p-1 291.5 482.9 184.0 54.5 291.5 289.2 178.9 53.1
cg:p-max 928.5 1278.3 6332.5 32.2 928.5 1953.9 6116.5 32.4
cg:t-s 554.8 1013.3 5494.4 47.8 554.8 1578.6 5298.4 48.0
cg:t-s:l 461.6 884.5 2435.6 48.7 461.6 1209.1 2425.8 48.9
cg:t-r 887.2 1268.3 7125.3 36.6 887.2 2084.5 7125.4 36.2
cg:t-r:l 736.2 1137.4 3564.3 38.6 736.2 1394.4 3500.3 38.2
db:s:1 266.4 511.7 217.2 56.9 266.4 382.4 211.7 57.0
db:r:1 276.7 573.5 366.3 55.6 276.3 583.1 350.8 55.7
ds:d:1 259.2 421.2 846695.0 0.3 259.2 1062.9 831597.1 0.3
ds:d:10:1 259.2 417.2 907376.5 0.0 259.2 1085.3 905852.5 0.0
ds:d:1.1:1 259.2 416.8 9256.1 10.4 259.2 1011.6 9133.3 10.3
ds:s:1 259.2 454.8 169.4 56.5 259.2 437.0 164.9 55.8
ds:r:1 259.2 485.0 643.3 56.8 259.2 746.5 630.2 56.7
dt 777.5 1123.7 2575.8 49.7 777.5 1087.0 2485.0 49.5
dt:l 709.7 1049.5 1967.7 50.2 709.7 933.6 1928.7 49.3
dt:i 982.4 1251.1 3866.7 47.9 982.4 1525.9 3790.4 47.9
dt:s 777.5 1123.4 2576.0 49.9 777.5 1085.0 2484.0 49.1
dt:r 777.5 1126.0 2534.3 49.9 777.5 1085.1 2484.0 49.3
p:d:b 887.2 1273.3 7125.3 36.4 887.2 2064.0 6996.4 36.2
p:b 938.5 1315.3 13787.9 35.7 931.8 2378.7 12626.5 36.3
p:d:a 429.6 690.0 1325130.4 0.1 429.6 1535.8 1279479.9 0.1
p:a 434.0 779.2 3211.6 50.9 434.0 1055.3 3151.8 50.7
p:d:f 344.5 538.6 1046599.1 0.3 344.5 878.1 1027937.1 0.3
p:f 348.9 573.9 369.9 52.0 348.6 344.4 348.2 51.6
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Table D.2: Comparison of the selected metrics for the {𝑠𝑡𝑎𝑝, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑓𝑓} and
{𝑒𝑏𝑝𝑓, 𝑐𝑎𝑐ℎ𝑒_𝑜𝑛} configurations of the CCSDS evaluation results.

Method SystemTap: cache off eBPF: cache off
PL [Δ%] PT [Δ%] RDV [Δ%] FC [%] PL [Δ%] PT [Δ%] RDV [Δ%] FC [%]

no-opt 0 0 0 52.2 0.0 0.0 0.0 37.3
cg:m 144.8 -6.1 -0.2 54.0 144.8 -4.2 3.2 43.9
cg:p 310.0 141.8 364.5 42.1 310.0 66.9 232.4 22.2
cg:p-1 310.0 141.0 364.6 42.1 310.0 66.6 232.4 19.4
cg:p-max 16300.0 284.0 124637452.9 0.0 16300.0 186.1 148242154.5 0.0
cg:t-s 446.7 284.1 330211.5 42.9 446.7 131.5 232365.0 7.7
cg:t-s:l 300.0 222.6 1424.1 43.2 300.0 122.1 226843.5 6.2
cg:t-r 1390.9 284.1 22900569.7 0.0 1390.9 154.9 14516203.9 0.0
cg:t-r:l 925.0 284.4 15186828.7 0.0 925.0 148.6 8612566.2 0.0
sb:c 507.4 180.7 2076.5 52.0 507.4 52.3 1174.4 26.1
sb:l 1071.4 212.8 2522810.0 25.0 1071.4 70.2 2260525.9 20.0
sb:q 1390.9 212.7 19225905.5 22.2 1390.9 71.5 15780527.1 14.3
db:s:1 209.4 219.1 1481.1 49.0 203.7 101.3 2437.5 20.5
db:r:1 234.7 226.8 1858.9 44.4 228.0 107.5 4678.6 12.5
ds:d:1 144.8 146.4 2998.8 54.0 144.8 35.5 2992.2 46.4
ds:d:10:1 144.8 160.3 1018448.5 11.1 144.8 42.3 2242905.2 8.9
ds:d:1.1:1 144.8 37.8 82.8 55.6 144.8 30.4 631.3 32.7
ds:s:1 144.8 132.5 1089.0 55.6 144.8 34.2 1343.1 31.4
ds:r:1 144.8 165.7 11272.8 55.6 144.8 39.4 12289.2 31.4
dt 2242.9 150.7 386.2 57.1 2242.9 86.0 255.9 57.1
dt:l 1540.0 50.9 55.9 70.0 1540.0 70.3 179.2 66.7
dt:i 2242.9 150.3 385.8 57.1 2242.9 86.1 255.9 57.1
dt:s 2242.9 150.9 386.2 71.4 2242.9 86.2 243.6 57.1
dt:r 2242.9 150.0 397.1 57.1 2242.9 85.7 243.6 57.1
dp - - - - 0.0 35.4 106.9 40.7
dp:l - - - - 0.0 55.2 230.6 47.5
dp:h - - - - 0.0 -3.6 -0.5 39.0
dp:r - - - - 0.0 48.8 206.6 49.2
ts - - - - 0.0 19.5 186.6 46.7
ts:2 - - - - 0.0 16.2 119.3 38.2
ts:4 - - - - 0.0 17.5 130.0 38.0
p:d:b 1390.9 283.5 23496036.7 0.0 1390.9 155.1 14516203.9 0.0
p:b 1390.9 282.6 22900569.7 0.0 1390.9 154.8 15480894.9 0.0
p:d:a 382.4 233.0 14634.5 37.5 382.4 98.8 27307.4 27.6
p:a 397.0 241.3 4873.8 38.7 382.4 99.4 14974.4 11.1
p:d:f 530.8 178.2 14737.7 54.2 530.8 46.9 27133.3 45.5
p:f 583.3 184.3 4845.7 63.6 556.0 47.9 15085.3 21.1
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Appendix E

Storage Medium

We have enclosed a storage medium (DVD) with this Thesis. The DVD contains two
notable folders:

• The latex folder contains an electronic copy of the Thesis in both PDF and source
code format.

• The perun folder. Since the focus of the Thesis — designing and implementing opti-
mization techniques within the Perun framework — is tightly interconnected with the
Perun internals, it is not feasible to extract and present only the source code created
within this work. Hence the perun folder contains the full source code of the Perun
framework. However, we also included the project respository (Git) with only two
relevant branches: develop and collect-optimizations where the latter contains only
the code created during the course of this Thesis. Using the appropriate tools (e.g.,
git show <commit>), one can precisely inspect the individual changes relevant to
this Thesis. Moreover, the collect-optimizations branch is also available online at:
https://github.com/JiriPavela/perun/tree/collect-optimizations.
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