BRNO UNIVERSITY OF TECHNOLOGY

VYSOKE UCENIi TECHNICKE V BRNE

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMACNICH TECHNOLOGII

DEPARTMENT OF INTELLIGENT SYSTEMS
USTAV INTELIGENTNICH SYSTEMU

PERFORMANCE TESTING AND ANALYSIS OF QPID
DISPATCH ROUTER

TESTOVANIi A ANALYZA VYKONNOSTI QPID DISPATCH ROUTERU

MASTER’'S THESIS
DIPLOMOVA PRACE

AUTHOR Bc. JAKUB STEJSKAL
AUTOR PRACE

SUPERVISOR Ing. TOMAS FIEDOR
VEDOUCI PRACE

BRNO 2018

Master's Thesis Specification/21191/2017/xstejs24

Brno University of Technology - Faculty of Information Technology

Department of Intelligent Systems Academic year 2017/2018
Master's Thesis Specification

For: Stejskal Jakub, Bc.

Branch of study: Information Systems

Title: Performance Testing and Analysis of Qpid Dispatch Router

Category: Software analysis and testing

Instructions for project work:

1. Study the principles of performance testing and, in particular, specific methods focusing on
message sending systems and their routing. Study related work used for testing performance
(i.e. msg-perf-tool, SpecIMS, or other open source tools) and point out their properties.

2. Design testing process, criteria and metrics suitable for performance analysis. Describe each
criterion and its importance.

3. Design extension of msg-perf-tool and a tool for topology generation, which will enable
performance testing of Qpid Dispatch Router based on proposed testing process and criteria.

4, Implement the proposed extension.

5. Demonstrate the functionality of the resulting implementation by performance testing of Qpid
Dispatch Router based on set of created performance tests. Discuss and analyze the results.

6. Evaluate the overall results and propose possibilities of future extensions of the project.

Basic references:
¢ Qpid Dispatch Router project: https://qpid.apache.org/components/dispatch-router/index.html
¢ msg-perf-tool repository: https://github.com/orpiske/msg-perf-tool
¢ Levente Erds: Performance Testing and Performance Improvement Methods for Communicating
Systems, 2012 https://db.bme.hu/~eros/diss.pdf

Requirements for the semestral defense:
Items 1 to 3.

Detailed formal specifications can be found at http://www.fit.vutbr.cz/info/szz/

The Master's Thesis must define its purpose, describe a current state of the art, introduce the theoretical and technical
background relevant to the problems solved, and specify what parts have been used from earlier projects or have been taken
over from other sources.

Each student will hand-in printed as well as electronic versions of the technical report, an electronic version of the
complete program documentation, program source files, and a functional hardware prototype sample if desired. The
information in electronic form will be stored on a standard non-rewritable medium (CD-R, DVD-R, etc.) in formats common at
the FIT. In order to allow regular handling, the medium will be securely attached to the printed report.

Supervisor: Fiedor Tomas, Ing., DITS FIT BUT
Beginning of work: November 1, 2017
Date of delivery: May 23, 2018

VYSOKE UCENI TECHNICKE V RR
Fakulta infoka@énich,
Ustav int

winy
0, BoZetéchova 2

Petr Hanacek
Associate Professor and Head of Department

Abstract

Application performance testing has recently become more important during the application
development of all kinds. This paper maps the fundamentals of performance testing that
are commonly used and it analyzes performance testing of components used in Messaging
systems, especially Apache ActiveM(Q Artemis and Qpid-Dispatch. However, currently used
methods for performance testing of these components are primarily focused only on Apache
ActiveMQ Artemis by system Messaging Performance Tool called Maestro. This paper
proposes improvements of Messaging Performance Tool to allow proper performance testing
of Qpid-Dispatch and its capabilities in automatic testing. The solution is demonstrated
on series of experiments with different topologies. The final report evaluates the proposed
application, the performance of Qpid-Dispatch component and develops ideas for future
works.

Abstrakt

Vykonnosti testovani aplikaci nabird v posledni dobé na dulezitosti béhem vyvoje vSeho
druhu. Tato priace mapuje zaklady testovani vykonu, které jsou aplikovatelné na libovolné
aplikace a nasledné analyzuje testovani vykonu komponent pouzivanych v Messaging sys-
témech a to konkrétné Apache ActiveMQ Artemis a Qpid-Dispatch. Vyuzivané metody
testovani vykonu je zaméreno zejména na Apache ActiveM(Q Artemis pomoci systému
Messaging Performance Tool s ndzvem Maestro. Prace navrhuje vylepseni této aplikace
o rozsireni testovani systému Qpid-Dispatch a jeji moznosti pfi automatizovaném testovani.
Reseni je demonstrovano na sérii experimentt s riznymi topologiemi. Vysledns zprava
zavérem vyhodnocuje navrzené rozsiteni systému Maestro, zhodnocuje vykon komponenty
Qpid-Dispatch a rozviji myslenky pro dalsi rozsiteni.

Keywords

testing, performance analysis, performance testing, network technologies, router, Qpid-
Dispatch, AMQP, throughput, latency, JMS, Maestro, MPT, MessageQueuing

Klicova slova
testovani, analyza vykonu, testovani vykonu, sifové technologie, router, Qpid-Dispatch,
AMQP, propustnost, latency, JMS, Maestro, MPT, MessageQueuing

Reference

STEJSKAL, Jakub. Performance Testing and Analysis of Qpid Dispatch Router. Brno,
2018. Master’s thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Tomas Fiedor

Rozsireny abstrakt

Jednim z hlavnich cili béhem vyvoje softwaru je pfijatelny vykon vytvorené aplikace. Mi-
moradny diraz na vykonnost softwaru je pak hlavné kladen napriklad na aplikace pouzi-
vané ve vesmirnych programech, zdravotnictvi, armadnich systémech a nebo v systémech
pro distribuci energie. V téchto odvétvich je nutno garantovat spravné chovani aplikace po
neomezenou dobu béhu pod vysokou zatézi, a to bez viditelnych vykonnostnich problému
jako je vysokd doba odezvy, Castd zpozdéni nebo vyprSeni ¢asovych limitd pro spojeni.
Protoze sebemensi chyba pak muze mit fatalni nasledky.

Soucasné je ale v dnesnich dnech vyzadovan i hladky béh sifovych aplikaci a systému
a to hlavné kvuli stale frekventovanéjsi komunikaci pres internet. Pro internetovou komu-
nikaci zpravidla vyuzivime rizné komponenty jako jsou hardwarové smérovace ¢i prepinace,
ale také softwarové verze téchto komponent spojené do tzv. Messaging systému. Prikla-
dem soucasti téchto systému je komponenta Apache ActiveM() Artemis— distributor zprav
v siti—mnebo @Qpid-Dispatch— smérovac na aplikacni vrstvé. Obé komponenty jsou vyvijeny
spolec¢nosti Red Hat Inc. a k jejich vykonnostnimu testovani se pouziva nastroj Maestro.

Hlavnim pfinosem této prace je rozsiteni zminéného néstroje pro vykonnosti testovani
Maestro, ktery se zaméfuje na vykonnostni testovani Messaging systému (Message-oriented
middleware), s diraznym zaméfenim na komponentu AMQ Broker, ale diky AMQP pro-
tokolu je mozné vyuziti na libovolnou AMQP komponentu. Préce popisuje zejména ar-
chitekturu celého systému a komunikaci mezi jednotlivymi komponentami pomoci MQTT
protokolu. Aby bylo mozné vyuzivat nastroj Maestro pro testovani Qpid-Dispatch efektivné
a s moznosti simulovat redlny provoz, bylo dile nutné navrhnout a realizovat nové kom-
ponenty pro nastroj Maestro, které tento druh testovani umoznily. Témito komponentami
je Maestro Agent, ktery umoznuje za béhu testu vyvolat externi udalosti v siti, a AMQP
Inspector, ktery umoznuje kontinualni monitorovani pravé Qpid-Dispatch, naptriklad pro
sledovani poctu pripojeni, velikosti alokované paméti nebo poc¢tu prenesenych zprav. Im-
plementace téchto komponent ale vyzadovala zasahy do komunikac¢niho systému nastroje
Maestro.

Soucasti implementace je také navrzeni a realizace externtho néstroje pro generovani
a nasledné nahrani topologii skladajicich se z Qpid-Dispatch uzli. Tento nastroj umoznuje
na zakladé metadat vytvorit konfiguracni soubory pro vsechny Qpid-Dispatch uzly v siti
a pomoci nastroje Ansible jsme schopni tyto soubory jednoduse a automatizované nahrat
na cilové stroje, ¢imz lze relativné snadno topologii ménit napiiklad mezi riznymi testy.

Realizovand implementace byla experimentilné ovéfena na sadé prikladd s rlznymi
topologiemi. Diky integra¢nimu néstroji Jenkins bylo rovnéz mozné provadét plné autom-
atizované testovani, véetné zmén topologie. Testovani probihalo na strojich v laboratori
s operacnim systémem Red Hat Enterprise Linux a nainstalovanymi komponentami Qpid-
Dispatch, pripadné Messaging Broker. Experimenty byly provadény s verzi Maestro 1.3.0,
kde byly zakomponovany rozsifeni Maestro Agent a AMQP Inspector. Namérené vysledky
ukazuji fadu zajimavych faktt, jako je naptiklad prilisSna degradace propustnosti linky pfi
topologii sériového zapojeni nékolika Qpid-Dispatch routert. Zdrojové kédy jsou zverejnény
jako open-source a jsou dostupné na serveru GitHub. Navrzené a implementované rozsireni
je jiz realné nasazené a pouziva se k vykonnostnimu testovani novych verzi komponent
Messaging Broker a Qpid-Dispatch.

Performance Testing and Analysis of Qpid Dis-
patch Router

Declaration

Hereby I declare that this Master’s thesis was prepared as an original author’s work under
the supervision of Ing. Tomas Fiedor. The supplementary information were provided by
Ing. Zdenék Kraus and Bsc. Otavio Rodolfo Piske from Red Hat Czech s.r.o. All the relevant
information sources, which were used during preparation of this thesis, are properly cited
and included in the list of references.

Jakub Stejskal
May 22, 2018

Acknowledgements

I would like to thank to my supervisors, Ing. Tom4s Fiedor from BUT FIT and Ing. Zdenék
Kraus from Red Hat Czech s.r.o. for guidance and providing important insight about per-
formance problems. Also I would like to thank my colleagues Bsc. Otavio Rodolfo Piske for
his time during the introduction and explanation of Maestro and help with the development
and CI integration, and Dominik Lenoch for introduction to Qpid-Dispatch service.

Contents

Introduction

Fundamentals of Software Performance Testing

2.1 Performance Testing Process L.
2.2 Performance Issues
2.3 Types of Performance Testing
2.4 Performance Metrics L L
2.4.1 Throughput
2.4.2 Response Time and Latency
2.4.3 Resource Usage
244 Error Rate

Messaging Performance Tool

3.1 Test Case Scenario
3.2 Communication Between Components
3.3 Measuring Process L L L
3.3.1 Testing Metrics
3.4 Collected Data Format
3.5 Related Works
Analysis and Design
4.1 Used Technologies
4.1.1 Ansible
4.1.2 Docker. L
4.2 Qpid-Dispatch Router
4.2.1 Theory of Operation
4.2.2 Addresses and Connections
4.2.3 Message Routing
4.3 Automatic Topology Generator
4.3.1 Topology Components
4.3.2 Input and Output Format
4.3.3 Graph Metadatao
4.3.4 Topology Deployment
4.4 Agent Performance Module
4.4.1 Extension Points oo oo
4.4.2 Communication with Agent
4.4.3 AMQP Inspector

© 3 ot W

14

15
18
18

19
21
21
22
22
23
25

5 Implementation
5.1 Topology Generation
5.1.1 Configuration File Generation
5.1.2 Template Generator
5.1.3 Topology Generator
5.1.4 Deployment L L
5.2 Qpid-Dispatch Performance Module
5.2.1 MPT Preparations
5.2.2 Agent Module
5.2.3 AMQP Management Inspector
6 Experimental Evaluation
6.1 Basic Performance Measurements
6.1.1 Throughput
6.1.2 Latency
6.2 Behavior Measurements L Lo
6.2.1 Agent Demonstration
6.2.2 Measurement With Redundant Router
7 Future works and ideas
7.1 Regression Testing L o
7.2 Data Reporting
7.3 Collected Data Compression
7.4 Multi-point Senders and Receiver
7.5 Maestro-Agent Executor Improvements
7.6 Multiple Agents and Inspectors L.
8 Conclusion
Bibliography

List of Figures

List of Tables

List of Abbreviations

List of Appendices

A

H# O aQ w

CD Content

The Maestro Protocol
Topology Generator
AMQP Inspector Data Sets

Experimental Evaluation Additional Data

38
38
38
39
40
42
43
43
44
46

49
49
51
56
61
62
63

67
67
67
68
68
69
69

70

71

75

76

78

79

80

81

85

88

90

1 Introduction

Good application performance is one of the main goals during the software development.
But what makes software performance so important? Software reliability has to be guar-
anteed by the owner, but with undesirable performance there could still be a lot of issues,
which can badly influence the software behavior. And this can cause a significant outflow
of the consumers, and even brand destruction, financial damage, or loss of trust. These few
reasons should be enough to do a proper performance testing before every software release,
especially for large projects where industries have to guarantee certain level of software
behavior and they would not be able to assure it with insufficient performance testing.
Great emphasis on software performance is, in particular, in space programs, medical facil-
ities, army systems, or energy distribution systems. In these fields it is necessary to ensure
proper application behavior for a long time under a high load and without any unexpected
behavior such as high response time, frequent delays, or timeouts, because every failure is
paid dearly.

Nowadays every developer should try to use well established frameworks which can
make theirs work easier. Frameworks already handle complex underlying issues such as
security, performance, or code clarity. This way developers can invest more time in the
actual functionality and meet the application requirements, since frameworks are usually
optimized for one particular job. In the past every developer had to spent significant portion
of development time tuning the performance which naturally led to spending more time and
money for software development. But not everyone has enough knowledge of performance
testing and this makes performance analysis and optimization even more difficult. This
leads to a need for specialized performance tools which can provide more sophisticated
information, however, useful tools are usually proprietary or are too expensive.

A very important part of the performance analysis is the right choice of so called key
performance indicators (KPIs) [19] and effective interpretation of the results. The right
choice of KPIs allows faster detection of performance problems and help developers with
fixes and meeting the performance standards [19] set up by application owner or customer
in time before the release.

In general an application performance is important. However, smooth network appli-
cation or hardware performance became much more demanded nowadays, since most of
the communication is performed via the Internet. Obviously when you make a payment in
your internet banking you definitely want to have a stable connection to your bank’s website
without any delay. Network stability is significantly influenced by network components like
routers and switches and hence their performance should be under the utmost case. We
refer to network performance testing as measurement of network service quality which is
directly influenced by bandwidth, throughput, latency, etc.

For performance testing of particular network messaging systems developed by Red Hat Inc.
there is an existing solution —Messaging Performance Tool (MPT) called Maestro [21].

MPT is specialized for the performance testing of AMQ Broker (message broker) [22] —
network application level software cooperating with Qpid-Dispatch service [23] in the net-
work as the message distributor. Unfortunately, the current version of Maestro does not
support performance testing of enough components like the message router component,
Qpid-Dispatch. In this work we will focus on this particular short coming and develop a
worthy solution allowing proper performance testing of the Qpid-Dispatch service.

This thesis is structured as follows. First, we define fundamentals of performance testing
in Chapter 2. The rest of the thesis focuses on performance testing and analysis of Qpid-
Dispatch, an application level router designed by Red Hat Inc. Qpid-Dispatch performance
testing is based on Maestro described in Chapter 3. Description includes measurement
process and measured data description and evaluation.The main goal of the thesis is to an-
alyze Maestro and design module for the Qpid-Dispatch performance testing as described
in Chapter 4 together with used protocols and Automatic Topology Generator for semi-
automated network generation and deployment. Used technologies, tools and implemen-
tation processes of each component are described in Chapter 5. The most important part
of the thesis is Chapter 6, containing the data gathering from routers located in different
types of topology, data evaluation and representation which leads to conclusion about per-
formance of Qpid-Dispatch. Finally, Chapter 8 summarizes the thesis and proposes ideas
for future use of developed tool.

2 Fundamentals of Software
Performance Testing

The usual goal of the performance testing is to ensure that the application runs reasonably
fast enough to keep the attention of users, even with unexpected amount of clients using the
application at the same time. But why is it so important to have the application optimized
for the best speed? Simply, when your application has slow response, long load time or bad
scalability, the first website which user will visit afterwards will be the web of your com-
petitor. That is the reason why speed is currently one of the most significant performance
factor of common performance problems. This chapter summarizes the fundamentals of the
performance testing which includes definitions of common performance processes, issues,
and metrics, based on knowledge available in [19, 18, 12, 2].

2.1 Performance Testing Process

The main goal of the performance testing is to ensure the following application attributes

[14]:

Reliability and Stability —the ability of software to perform its functions in system
environment under some system load for acceptable! period of time,

Scalability —the ability of software to behave properly under various types of system
load and handle increasing amounts of workload (such as network traffic, server load,
data transfer, etc.) which would need new hardware for cluster expansion,

Processing time and Speed —the ability of software to react quickly without low
response time during any acceptable system load,

Availability —the ability of software to make all of its functions available during any
acceptable system load. The ability of software, deployed in cluster, to provide all
functions during node crash is called High Availability.

Similarly to software development process, performance testing process consist of usual
engineering steps ranging from requirements definition to data evaluation. These steps also
includes design, implementation, and execution of performance tests with data collection.
The graphical representation of the performance testing process is depicted in the Figure 2.1.

'During software development there is a document with Software Requirements Specification which
specifies software metrics, including performance.

Performance Testing Process

Performance testing steps:

/ Requirements Gathering
/ / - Application Analysis
) / - Performance Requirements
/ - Metrics Calculation

/ Requirements

/ / . Desing and Test Plannin
/ Gathering 8 &

- Performance Test Strategy
- Effort Estimation
- Performance Test Design

/ Effort Estimation, - Workload Calculation
/ Design And
Planning Implementation and Execution

- Test Cases Implementation
- Execute Performance Tests
Implementation and Execution

Result Evaluation
- Performance Test Evaluation
- Results Report

Result Analysis, Reporting
And Defect Tracking

Figure 2.1: The performance testing process with the four most important parts and theirs
individual steps based on [24].

In the Figure 2.1 you can see the scheme of performance testing process where each
level represent required time for each step. Lower levels refers to more time spend on that
step.

The first step of performance testing process is the selection of performance requirements
for the application. In this step, testing engineer has to analyze software under test — SUT,
chose suitable performance metrics, that will model the application performance, and state
performance requirements, usually with customer and project manager. The result should
include answers to questions such as:

e How many end users will the application need to handle at release, after six months
or in one year?

o Where will these users be physically located, and how will they connect to the appli-
cation?

e How many end users will be concurrently connected in average at release, after
six months and one year?

Based on answer to these studies, the engineer should be able to select important key
performance indicators for performance test cases. Some of these indicators may be response
time, stability, scalability, or speed. However, there is huge amount of possible indicators so
it is necessary to properly analyze the whole application and also take into consideration

another needs such as error rate, system resources, etc. Result of this phase should be
a binding document with all performance requirements to be tested, and in case of detected
performance degradation, such defect must be fixed w.r.t this document.

The next step is to define the performance testing strategy, corresponding to the planning
and design. It is extremely important to allocate enough time for SUT testing effectively,
because, as it was mentioned in Chapter 1, performance testing is not an easy task and
detecting all of the possible issues of tested components is very time consuming process.
Every plan should take into account the following considerations:

Prepare the test environment — this step includes choosing the right hardware for the
testing, then installing the necessary software for running load injectors, tested com-
ponents, etc., and preparing other equipment depending on the application purpose
such as routers, switches, mobile devices, etc.

Provide sufficient workload injectors—preparing the workload injectors may take
few days; we usually require few workstations or servers to simulate the real traffic.

Identify and implement use cases—this includes identification of important parts
of the system which may have an impact on performance; time needed for each use
case may be different because some use cases can be simple such as navigating to
a web application home page, but some may be complex such as filtering specific
communication.

Instrument the test environment —install and configure the monitoring software on
the test environment.

Deal with detected problems—tests can detect significant performance issues, but
their investigation and the actual fixes may take a long time. After the fix the retest
of issue is needed.

While this process seems trivial, the opposite is true, especially in cases of network
applications. Most of the performance issues manifest with big workloads or high number of
users, e.g. when million users are sending requests to the network device at the same time it
can lead to an unacceptable device crash. Workload injectors are designated to simulate real
user activity, and allows automatic analysis of performance behavior for tested application
or device. Depending on the used technology, there can be a limit on the number of virtual
users that can be generated by a single injector. These automated workload injectors are
necessary for effective performance testing.

After describing the plan we implement and execute proposed test cases. Environment
and workload injectors are ready for the execution, so the last step before the testing itself
is the implementation of tests. Thanks to the careful planing, engineers should have enough
time to implement test cases with reference to proposed design.

The final step of the performance testing process is evaluation of the results. Output
of this step is usually technical report with all selected performance key indicators, used
workload and Collected Data Format for each test case. Then follows the data evaluation
with thorough analysis of degradation localization. Additionally, the report usually contains
syntactical graphs which display performance metrics along the duration of test execution.

2.2 Performance Issues

A performance issue is a common label for an unexpected application or device behavior
which affects its performance. Usually, those issues are hard to detect because they manifest

only under certain circumstances such as high load or long application run time. In the
network applications there are several particular issues that are more frequently occurring
than others. In the following, we will describe selected issues in more details.

Performance Degradation

An unclean code usually leads to inefficient algorithms, application deadlocks, or memory
leaks, which all can eventually cause a performance degradation. The problem is that these
issues are usually detected only during the long run time of application or inability of an
application to handle high load. For this kind of issues there is a performance testing method
called the endurance testing [9, 16] which is described in Section 2.3. The endurance test is
intended to identify problems that may appear only after the long period of the application
run-time?, hence its necessary to run this type of tests during the application development.
The network applications usually need to be available for 24 hours per day. The duration
of a endurance test should have some correlation to the operational mode of the system
under test. Following scenarios may represent performance issues detectable by endurance
tests:

a constant degradation in response time, when the system is run over the time,

any degradation in system resources that are not apparent during short runs, but will
surface during the long run time such as free disk space, or memory consumption,

a periodical process that may affect the performance of the system, but can be de-
tected only during the long run time such as a backup process, exporting of data to
a 3rd party system, etc.,

a development of new features for already existing components.

Response Time

Response time represents how long it takes for system to accept, evaluate, and respond to
the user for his request e.g. HTTP request for the particular website. Different actions
and requests can have significantly different response time and with that provide different
load on the system. For example retrieving document from a web-server by its ID is
considerably faster than searching for the same document by keywords. Response time
is mostly measured during the load test [16] of the application. Well designed test should
consider different types of load on the system, various kind of requests, and different number
of connected end-users at the same time. For user based systems we usually consider three
thresholds for the response time values:

0.1 second — this represent an ideal response time for the application, because user feels
that system is reacting instantly and does not notice any interruptions.

1 second — this is the highest acceptable response time when user still does not feel any
interruptions, but can feel a little delay; this still represent no bad impact on the user
experience.

10 seconds—this is the limit after which response time become unacceptable and user
will probably stop using the application.

2Soak Test — refer to HW testing method during where engineers soak device into water and check for
bubble leaks.

However response time thresholds for non-human interactive system are more strict.
They can range in milliseconds or less.

Traffic Spikes

As a traffic spike [18, 6] we can understand the sudden surge in demand from users. Typ-
ically manifesting by doubling or multiplying of traffic level in a short period of time. In
a real network, spikes are result of high workload, e.g. caused by higher amount of users
trying to concurrently use the service over the network. For example we can experience a
sudden traffic spike in response time after publishing new popular viral content on video
servers, start of sales events, reservation of limited amount tickets or subject registration
at university. Scheduled automatic backup or system upgrade for whole company during
early morning hours can also cause traffic spikes.

Traffic spikes can lead to the inappropriate system behavior such as long response time,
bad throughput, and limited concurrency. To prevent the impact of traffic spikes on system
performance, it is necessary to do a sophisticated infrastructure monitoring and network
load analysis, in order to distinguish between normal traffic and an attack on the system.
Suitable methods for testing of spikes is one of variant of stress testing [16] and it is described
in Section 2.3 in more details. Network system should offer load balancing, thus it should
be able to redirect traffic to another node with same service in case of high load which can
cause performance issues due inappropriate resource usage.

Traffic Spike
3500
Request Count
3000 Spike
@ 2500 -
=
g 2000 [
3
O
+ 1500 |~
Q
o2 1000 [
500 -
0] |]] I]]] |]
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00

Relative Time [HH:MM]|

Figure 2.2: The graph shows amount of concurrent sessions depending on time. During to
network traffic monitoring we can see the traffic spike occurring after five hours from test
start.

2.3 Types of Performance Testing

For performance testing there are many types of suitable test methods. Which test you
should use is determined by the nature of the system, testing requirements or how much
time we have left for the performance testing. The following terms are generally well known
and used in practice and each of them characterizes a category or suite of the tests:

e Testing methods—load testing, stress testing, endurance testing,

e Testing approaches —smoke testing, regression testing, benchmark testing.

Their description is based on the knowledge available in [5, 9, 19, 2].

Load Testing

Finding the maximal load is a testing method which studies how the system behaves during
different types of workload within acceptable time range. Basically, it simulates the real-
world load. During the load test we mainly focus on response time metric of the system
for requests. Requests are generated by users or another systems communicating with the
SUT. The main goal is to determine if the system can handle required workload according
to performance requirements. Load test is designed to measure the response time of system
transactions under normal or peak workload. When the response time of the system dra-
matically increases or becomes unstable, we conclude that system has reached its maximum
operating capacity. After the successful testing, we should mark the workload requirements
as fulfilling or analyze the Collected Data Format and report issues to the developers. In
the Figure 2.3 you can see the graph of load test showing workload of raising requests to the
web server at the same time where the system response time does not exceed 3.5 seconds.

Load Testing

4000 5
Request Count
Response Time
A 4
3000
= —
W) 2,
=S 3 g
S 2000 - 8
Z g
E g 7
g =
=1
1000 -
1
0 0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [HH:MM]

Figure 2.3: The response time of the system during the load testing depended on requests
per second.

The following list shows common scenarios for load testing:

e The system interacting with multiple users at same time.

e The system tracking communication and analyzing it.

10

e Web services and information systems.
Typical system issues covered by the load testing:
e Concurrent users connections can eventually result into the slow response time or

system crash.

e Network systems without redundancy connections can shutdown the whole network
under normal defined workload.

e Data availability during multiple sessions to data server.

e Connection rejection (timeout).

Stress Testing

Stress testing is the specific type of load testing, where we do not measure the normal
workload, but focus on unexpected workloads or traffic spikes. The main purpose is to study
how the system behaves in extreme conditions such as an enormous number of concurrent
requests, using a server with much less memory or a weaker CPU, and analyze the system
performance threshold. Its very useful to know performance threshold in order to know the
difference between performance under normal workload and performance threshold. The
following enumeration lists common stress test scenarios:

e Monitoring the system behavior with over maximum of users logged in at the same
time.

e All user performing critical operations at the same time.

e All users accessing the same file at the same time.

e Hardware issues such as having a server in a cluster down.
Typical issues, which are covered by stress testing are as follows:

e A sudden performance degradation.
e System will not recover after the stress test (system is not operational after test).
e System will crash during stress test.

e All subsystems such as database, load balancer, etc. are not operational after the
stress test.

When engineers finish stress testing and finds the limits of the system, they also can
test the system recovery after a crash during finding of the system limits.

In the Figure 2.4 we show recorded stress testing with a raising load and response time.
Everything is fine until the amount of requests exceed 3,000 requests per second. With
higher load there comes performance issues which leads to unexpected rise of the response
time.

11

Stress Testing

5000
Request Count
Response Time i

4000

3000

2000

Request Count [RPS]
Response Time [s]

1000

0 0
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00 16:00

Relative Time [HH:MM]|

Figure 2.4: Stress testing diagram capturing dependency of response time on amount of
requests.

Endurance Testing

The endurance, or stability /soak testing refers to the method, that tries to identify prob-
lems, that may appear only after the extended period of time e.g. The system could seem
to be stable for one week, but after some longer period, problems such as memory leaks or
not enough disk space can appear. Soak tests mainly focuses on measuring the memory as
a performance metric. Typical scenarios for usage of soak testing:

e Developed system uses multiple database connections.

e There is a chance for inappropriately allocated memory, or memory free.

e Disk space limitation for store logs or other data.
The following are common issues found by soak test:

e A serious memory leaks that can eventually result into the system crash.
e Improperly closed database connections that could starve the system.

e Improperly closed connections between system layers that could stall any of the system
modules.

e Step-wise degradation that could lead to a high response time and the system becomes
inefficient.

This sort of test needs to use appropriate monitoring system to achieve the high effi-
ciency. Problems detected by soak tests are typically manifested by gradual system slow-
down in response time or as a sudden lost of system availability.

12

Endurance Testing

2500
Request Count 80 % of maximum
Request Count 10 % of maximum - 12000
Memory Allocated
2000 - = 10500
_ 9000
E 1500 - 7500 g
: z
O e
@ 6000 o
8 g
£ 1000 - 2
= 4500 <
3000
500
1500
0 0

Nov 28 Nov 30 Dec 02 Dec 04 Dec 06 Dec 08 Dec 10 Dec 12
Time [date]

Figure 2.5: Soak testing with memory usage dependent on time.

In the Figure 2.5 you can see rising memory usage after period of time. The SUT can
handle requests but as time goes by memory usage is too high and so the SUT will crash.
This may have been caused by a memory leak or an inappropriate algorithm use.

Smoke Testing

The smoke testing approach is inspired by the similar hardware technique, when engineers
checks for the presence of the smoke from the device after turning the power on. Basically,
its similar for software, since the main goal of smoke test is to test the basic functionality
of the system and guarantee that the system is ready for the build. However, smoke tests
are testing the functionality on a surface level, so they may not be enough for the deep
testing of basic system functions. When smoke tests fail, the system is tagged as unstable,
because it cannot ensure its basic functionality and it is not tested anymore until the smoke
test pass. Smoke test are designed to uncover obvious errors which saves time, money and
effort of the engineers. These tests should be used with every new build, since new features
could harm previous system functionality. The following lists show common scenarios for
smoke testing:

e New system’s build or version is ready for further testing or productilization.
Typical system issues covered by smoke testing testing:

e System without main functionality is useless, because test coverage of functionality
is low.

e Main functionality resulting into a system crash.

13

Smoke testing is not a typical performance testing approach, but it can be used for
initial load test to check if the system can be started.

Regression Testing

Whenever engineers develop a new feature and want to update the previous build it has
to pass the regression tests® [1]. Regression tests are designed to test functionality of the
latest build updated with new feature. The main objective is to determine, if new feature
affects already functional parts of the system. This type of tests is very important, because
engineers do not always realize, which parts of the system will be indirectly affected. During
the regression testing, new test cases are not created, but previous test cases are automatic
re-executed and analyzed. Typical scenarios for regression testing:

e New feature of system is ready for use.
Common issues covered by regression testing:

o New feature could adversely affect already working components of the system.

Benchmark Testing

The benchmark testing® is an approach, which collects performance data during the system
run on different hardware machines [17]. Collected Data Format has significant value when
we want smooth run of the system on an older hardware, hence we can discover performance
issues under normal load. However, when the system does not run smoothly on prepared
hardware, the only option is to run benchmark tests on different machines with different
hardware and under different load.

e Can identify minimal requirements for HW, metrics, etc.

e Can validate supported HW configuration.

2.4 Performance Metrics

During the performance testing we can monitor a lot of metrics, which can have different
importance based on the system’s purpose. The following lists the most common metrics
that are monitored during the performance testing of all applications not depending on
developing language.

In the tested systems, performance metrics are collected during the long process of
collection, analysis and reporting of information regarding the performance of whole the
system or an individual component. This process can be different for each metric, since
each metric needs different type of the system analysis.

The Ways to Measure

The performance measurement process can be divided into several steps. Metrics are usually
measured after a warm-up period of time after the commencement of traffic, because it takes
a while for workload to stabilize. Stabilized workload is necessary for measurements because

3 Approach for test suits, where are used other methods like Load testing, Stress testing, etc.

14

unstable workload can negatively affect the measurement results. In the Figure 2.6 one can
see a workload phases with marked part for the actual performance testing.

Testing Phases
2500 T T T T T T

2000

1500 -

1000 - Start ‘Warmup Test Cooldewn Stop

Requests Count [RPS]

500 [~

Figure 2.6: Load phases of performance measurement process.

Workload during testing does not have to be on the same during the whole testing. In
particular, load testing finds the highest load during which the system can work properly.
This limit is found by raising the load and monitoring the system as it is shown in the
Figure 2.3.

2.4.1 Throughput

Throughput is a metric, which refers to the number of requests per second that the system
can handle. Network throughput is the rate of successful message deliveries over a commu-
nication channel. Throughput is measured by load testing; suitable strategy for measuring
throughput is to continuously raise the load until response takes longer that acceptable
threshold.

2.4.2 Response Time and Latency

Slow response time as an issue was already mentioned in the Subsection 2.2; response time
as metric consists of two parts— latency and service time.

Service Time

Service time is the time it takes the system to evaluate and send the response to the user
request. In particular, when user sends a request for a web page to a server, it takes the
server time to evaluate the request and send the proper response back to the user; this
is the service time. Measurement can be performed easily using a stopwatch which starts
when request is received and stops after the response is sent. Service time can be affected
by any item which leads to a performance degradation as described in the Subsection 2.2.

15

Latency

The second part of the response time is the latency [2, 7], which represents a delay between
the sending the request on the client side and receiving it for evaluation on the server side.
Hence, latency is the common problem in the network systems such as data centers, web
servers, etc., because request/response needs to travel over the physical medium between
the client and the server. Client and server can be located on different continents, thus the
message has to travel long distance and the latency increases.

Round Trip Time

Round-trip time (RTT) is a time that it takes for a signal to be sent together with a time it
takes for an acknowledgement of that signal to be received. In network, the RTT is one of
the several factors that affects the signal latency. Basically, RT'T depends on the distance
between the sender and receiver, because that is the distance the signals must travel by.

Service Time vs. Latency

12
Response Time
Latency
10 - Service Time
8 -
7y
£
6 -
=
4 -
2 -
0 : I : I : I : I : I : I : I
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [HH:MM]

Figure 2.7: Diagram capturing the difference between the latency and response time.

In the Figure 2.7 you can see the response time and both of it’s parts: latency and
service time. Service time is usually smaller than latency since latency depends on the
distance. When you add service time value and latency value you will get response time at
certain time.

Average and Percentile Response Time

There are two common ways of measuring the response time [15]: one of them being the
average (mean) response time calculated as the sum of all measured times divided by the
count of users requests. While this seems trivial, in many times, the average response time
does not actually reflect the real response time of the system. How is that possible? In
reality, most applications have few heavy outliers such as several very slow transactions.
In the Figure 2.8 you can see few slow transactions which drag the average of the response
time to the right. This naturally leads to an inaccurate specification of response time.

16

Latency Measurement Histogram

9 T
. ! Median == = ==
= 8T | ! Average = = ¢
1
§7— - I 1
= | 1
g Or ! ;
g - :
& o4r ! '
& 1
|
503- . 1 : : :
= ! !
: 2T I '
Ol— 0 1
! ' O 0O 0 0 0 [
0 1 1
1 2 3 4 5 6 7 8 9 10 11 12

Response Time [s]

Figure 2.8: Transactions response time with calculated average and median of response
time. The average represent inaccurate response time, which is higher than real one.

Let’s look at another case, where a better solution how to determine the actual response
time is the Percentile. The percentile is statistic method, which cuts measured ordered
values into hundredths and then characterize the value below which a given percentage of
measurements in a group of particular measurements falls. In the Figure 2.8 you can see
the median value, which reflects more realistic value of the system response time. Median
value is same such as the 50th percentile. In this case, there is no problem, because user
will expect slower response time than it has.

Latency Measurement Histogram

9 T -
. 1
Median = = == . -
_ 8r Average = = ! | -
E 90th percentile * * ! | B
o Tr 1 = -
1S} . 1 -
() | o -
5 6 1 1 -
o b ! 1 — =1
2 ! . -
3
e : : :
|
E 3r 1 . -
2 1 1 -
2T ' l :
O 1 - -
L0 0 0 0 1 ! :
0 1 1
1 2 3 4 5 6 7 8 9 10 11 12

Response Time [s]

Figure 2.9: Transactions response time with calculated average and median of response
time.

17

The Figure 2.9 shows a different situation. The average represent inaccurate response
time, which says, that SUT is faster than it is in a reality. Average response time seems
better than median, which reflects the expectation of faster system response time than it
has. In real systems, we usually use values of the 90th percentile and the 99th percentile.
90th percentile mean, that there is only 10 % transactions slower then marked response
time. In the Figure 2.9, a considerable percentage of transactions are very fast (first 50
percent), while the bulk of transactions are several times slower. Thus, the calculated
percentile gets more realistic value than average response time.

2.4.3 Resource Usage

Applications running at servers with long run-time competes over a limited amount of
resources available for use. Thus makes resource usage another important metric, which
needs to be monitored since not enough resources could shut down the whole system. Main
resources for monitoring and utilization are:

CPU usage —inappropriate usage of CPU could lead to performance degradation, be-
cause low priority processes may occupy CPU ahead of the higher priority processes.
CPU usage is structuring into system usage and user usage. High system usage can
cause problems or bottlenecks.

Memory usage —full consumption of memory could cause performance degradation.

Disk space—for example when using storage disk as a database, there should be pre-
ventive measures to backup the data and free up disk space.

Operating System limits —system’s memory and CPU capabilities.

2.4.4 Error Rate

Error Rate is a metric, which commonly occurs in the network systems, especially under
high load. During the communication between client and server there could be error caused
by another network device (router, switch, etc.) or signal disruption of the data during
the transfer. The Error Rate is the mathematical calculation that produces a percentage
of problem requests compared to all requests. In the ideal system, there should be a
zero network errors present, however, in reality this is infeasible. This usually leads to a
performance degradation and low throughput, because damaged data need to be resent.
Error rate is a significant metric because it tells engineers how many requests failed at a
particular point in time of performance testing. This metric is more evident when you can
see the percentage of problem strongly increasing, hence you can detect the problem easily.

18

3 Messaging Performance Tool

The performance of Message-Oriented Middleware (MOM) [11] is one of the most critical
elements of quality assurance for enterprise integration systems. There are multiple messag-
ing components developed in the Red Hat Inc. company such as messaging clients, message
broker, message router (Qpid-Dispatch service) or stream-like message distributions tools—
Kafka. All of these software needs performance testing to ensure quality standards of MOM.
Note that we will shorten the term the messaging client to just client in this thesis.

The message broker is an example of MOM. Its main purpose is to receive, store and
distribute messages, which are sent and received by clients. Users choose MOM for message
distribution to reduce the development time and cost of their own solution. Another benefit
of using specialized MOM is robustness and guaranteed performance. The performance
capabilities of a MOM are critical attributes to its users, because being able to handle a large
amount of transactions in a timely manner is a key characteristic of MOM. Good example
are automated systems, where components communicates with each other by command
exchange. The amount of exchanged commands is heavily dependent on the system size
and since we want to get the results as soon as possible we need to ensure smooth and quick
message exchange.

Maestro (or Messaging Performance Tool) [21] is a testing system designed for testing the
performance of MOM. The Maestro is deployed as a cluster system on several machines.
A typical deployment consist of one node for Maestro Broker, one or more for Maestro
Senders, and one or more for Maestro Receivers and the SUT. The architecture of Maestro
system, depicted in the Figure 3.1, consists of the following components:

Maestro Broker — can be any Message Queuing Telemetry Transport' (MQTT) capable
broker with several topics. The topic is a queue with a name where other messaging
services can listen on the traffic. This component takes care of distribution of con-
trol messages between other cluster components such as Maestro Clients and MPT
Backend.

Meastro Clients — this component contains the client API as well as the test scripts for
each test case. Moreover it contains a sub-component called Reporter which interprets
the test data to user in form of web data visualizations.

MPT Back-end — consists of sender, receiver and inspector parts. Sender and receiver
handle message sending to the SUT and receiving from SUT. Inspector monitors
workload over the SUT and reports collected performance metrics to the data server.
Maestro currently has two backends:

IMQTT —nhttp://mqtt.org/

19

http://mqtt.org/

e Java —used for JMS-based? testing, including Advanced Message Queuing Pro-
tocol (AMQP) [20], OpenWire and Core protocols.

e C—used for AMQP and Streaming Teat Oriented Messaging Protocol® (STOMP)
protocol testing.

MPT Architecture
Infrastructure
Maestro
Broker
Active-MQ
Maestro Clients | Test node [i]
User PC -
C— Topics MPT Backend
MPT Client (C)
/mpt/daemon/sender
1 /mpt/daemon/receiver n
‘'mpt/daemon/inspector
(Java + Groovy)
/mpt/daemon/notifications
e
-
) =

Maestro Reporter

(Data Reporting)

D

MPT Data Server
(HTTP)

SUT
Broker <

Figure 3.1: The architecture of the Maestro. The Maestro contains Maestro Clients as a
front-end; Maestro Broker as a message distributor; and sender, receiver and inspectors as
a backend. The arrows represent communications between the Maestro components and
with the SUT. The line value represents the number of connections where default is 1.

2JMS — Java Message Service
3STOMP —https://stomp.github.io/

20

https://stomp.github.io/

3.1 Test Case Scenario

The test is basically a generation of huge amount of messages followed by sending them to
SUT and then receiving them. The configuration of each test case is specified by several
options defined in the Groovy® script which influences the test behavior with the following
elements:

e message size —size of the generated test message in bytes,

e number of connected clients—the count of senders and receivers connected to
the SUT,

e test duration (time or load) —the end condition of each test; can be specified by
time, limit or message count,

e message rate —the desired rate that the system should try to maintain through the
test (0 for unbounded rate).

The test script is also responsible for starting and stopping the test. Moreover the test
case can be extended by the so called test profile. The script will then also be responsible
for increasing or decreasing the workload on the SUT during the test scenario. This load
can be modified by increasing either the target rate or the number of parallel connections.
With multiple combinations of these options we can create a lot of test cases with different
loads for the SUT and thus achieve a broad coverage of testing. Every test produces its
own logs which are processed by the reporting sub-component on the client side and used
for monitoring the metrics. Maestro Reporter produces data visualizations, such as the test
overview and charts (rate based on time and latency over the test) from these logs.

3.2 Communication Between Components

The actual communication between components during the test cases is realized using the
Maestro Protocol —a binary protocol implemented on top of the MessagePack®. For the
message exchange between nodes it currently uses MQTT protocol (version 3.1.1) and for
sending the testing data to the data server it uses HTTP protocol (version 1.1). The
messages exchanged between the peers of testing cluster are called notes.

Each note has a specific format consisting of three parts. First is the Type which is
short integer that identifies the purpose of the note, and is one of the following values:

e Request (0) —a note sent by a controller node to the test peers,
e Response (1) —a note sent by a testing peer as a response for a request,

e Notification (2) —a note sent by a testing peer as a reaction to an event.

The second part is the Command which identifies the action to be executed or, in some
cases, that was executed. Currently, there are 18 commands represented by a long integer.
And the last part is the Payload which refers to the data carried by the note as part of its
command. Detailed description of commands and its payload is available in Appendix B.

4Groovy — object-oriented programming language for Java platform http://groovy-lang.org/
®Messagepack — https://msgpack.org/

21

http://groovy-lang.org/
https://msgpack.org/

3.3 Measuring Process

After the dynamic test generation, with options from the test file, the measuring process
starts. Senders will start sending messages to the SUT, while Inspector starts monitoring
the behavior of the SUT and sends measured data to the data server. For monitoring
purpose, Inspector uses the Broker management interface—a REST interface that exposes
(via HTTP protocol) an internal JVM® and Broker detailed information. The actual data
collection by Inspector is straightforward:

1. Inspector sends a HTTP request with the JavaScript Object Notation” (JSON) con-
tent to the Broker REST interface.

2. Broker evaluates the request and sends response to the Inspector.

3. Inspector collects the response.

Note that errors occurred during the collection may cause the test case to fail.

However, there are two problem factors; the first is that the Inspector should not in-
fluence the performance of the SUT. Current solution for the information collection works
like the management interface method call with request for information and response re-
trieval. During this call, the method usually involves locks to guarantee the thread safety
and exclusive access. However, calling this method too often can cause a significant Broker
performance degradation. In order to reduce this risk, the inspector enforces a collection
interval of 10 seconds and restricts usage only to selected operations. This strategy reduces
the hits on management interface to 2 or 3 hits every 10 seconds and presents a suitable
performance.

The other problem factor is the large size of the stored logs. This is mitigated by the
usage of the compression methods. However, compressed logs can still fill the whole hard
drive during the long test-run and so old logs has to be erased at some point of time.
Collected logs can be safely erased when the test is completed. Currently the Maestro
generates about 1 Gb of uncompressed data per hour of testing.

3.3.1 Testing Metrics

The type of metrics collected during tests depends on the cluster component. In the Table
3.1 we can see the summary of the metrics, which are collected for each component.

6JVM — Java Virtual Machine
7JSON — https://www.json.org/

22

https://www.json.org/

Component Metrics Description

Sender Throughput Throughput of the sender
Receiver Throughput Throughput of the receiver

Latency Time between send and receive messages
Broker JVM heap memory Maximum, minimum, and current Eden,

Survivor, and Tenured space®

JVM non-heap PermGen or Metaspace

Broker internals Queue size and expiration count
OS basic memory Physical and swap memory usage
OS resources Count of file descriptors

Table 3.1: The summary of Maestro metrics summary collected during test cases.

Throughput of the sender or receiver refers to the message count sent/received during
the performance test run. This metric is collected by each sender and receiver. On the
other hand latency is collected only by receiver. This refers to the time between sending
and receiving of the message and can be influenced by the Quality of Service or other
parameters. Since Messaging Broker is written in Java, JVM memory metric is relevant.
High JVM memory usage can point to the memory leak or bad algorithm implementation.
Broker queue has size threshold and message expiration time. When no one picks-up the
message from the queue after some period of time there is no need to keep old messages
and its unnecessary to fill too much of the memory.

Last metric is the OS resource spending during the performance testing. It is not
relevant for broker performance, but it is helpful to know e.g. the CPU usage, memory
usage, etc., in case of Broker crash debugging.

3.4 Collected Data Format

Data are collected by Inspector. Inspector continuously monitors the broker and collects
information about the workload. Output of this measurement should be one file for each
active inspector. The broker inspector file is composed of the following columns:

e Timestamp —the date and time of the data sample in the format YYYY-MM-DD
hh:mm:ss using the W3C defined standard for datetime.

e Load —size of the system load.

e Open file descriptors —number of opened filed descriptors.
e Free file descriptors —number of free file descriptors.

e Free memory — free physical memory.

e Free swap memory —swap free memory.

e Swap committed —swap committed memory.

e Eden initial —Eden initial memory.

8Eden, Survivor and Tenured space are internal Java memory spaces.

23

¢ Eden committed —Eden committed memory.

¢ Eden max — Eden maximum (limit) memory.

e Eden used —Eden used memory.

e Survivor initial — Survivor initial memory.

e Survivor committed — Survivor committed memory
e Survivor max— Survivor maximum (limit) memory.
e Survivor used — Survivor used memory.

e Tenured initial —Tenured initial memory.

e Tenured committed — Tenured committed memory.
e Tenured max — Tenured max memory.

e Tenured used — Tenured used memory.

e PM initial —Permgen or Metaspace initial memory (either Permgen or Metaspace
depending the JVM version).

¢ PM committed —Permgen or Metaspace committed memory (either Permgen or
Metaspace depending the JVM version).

e PM max— Permgen or Metaspace maximum memory (either Permgen or Metaspace
depending the JVM version).

e PM used —Permgen or Metaspace used memory (either Permgen or Metaspace
depending the JVM version).

e Queue size —number of messages waiting for processing in the queue.

e Consumers—number of consumers connected to the queue.

o Acknowledged —number of acknowledged messages in the queue.

e Expired —number of expired messages in the queue.

Maestro sender and receiver generate another relative performance testing data. Re-
ceiver generates latency log with the following data:

e Start Time-stamp —start time of the receiving.

e End Time-stamp —end time of the receiving.

e Interval Maximum — collected maximum latency.

e Interval Compressed Histogram —compressed histogram of measurement’s la-

tency in HDR? format.

Both, sender and receiver generate rate (throughput) data files. These contain data
about sent or received data by each peer. Data are stored in a compressed comma-separated
values (CSV) file with the following columns:

e eta—represents the estimated time of departure/arrival of the message, relative to
the start of the test.

e ata—represents the actual time of departure/arrival of the message, relative to the
start of the test.

HDR —nhttp://hdrhistogram.github.io/HdrHistogram/JavaDoc/org/HdrHistogram/package-
summary.html

24

http://hdrhistogram.github.io/HdrHistogram/JavaDoc/org/HdrHistogram/package-summary.html
http://hdrhistogram.github.io/HdrHistogram/JavaDoc/org/HdrHistogram/package-summary.html

3.5 Related Works

While Maestro is relatively new system, there are only few existing performance testing
tools for MOM. Noteworthy are two tools, which were used for performance testing before
the maestro development. These tools are SpecJMS [10] and JMeter'", the advantages and
disadvantages are described in the following.

SpecJMS

SpecJMS is the industry-standard benchmark for evaluating the performance of enterprise
message-oriented middlevare servers based on JMS. Basically, SpecJMS runs real-world
scenarios, which simulate real load over the messaging topology. SpecJMS collects data
during the test and then evaluates it as a score. This score is a standardized value, which
represent a performance of the tested system. Each system tested by SpecJMS can be
compared with another system based on the computed score. Note, that a fair comparison
between a tested systems involves run the tests on the same hardware.

The great advantage of SpecJMS is the comparison between the different tested systems
only based on the performance score. However, it has a poor test case capabilities, since the
test cases are pre-defined by the SpecJMS developers and designed only for JMS. Nowadays,
this benchmark tool is retired and is no longer supported.

JMeter

The Apache JMeter is an open source software designed to load test the functional behavior
and measure performance. JMeter system is basically an IDE written in Java, which offers a
performance testing of web applications, servers and MOM (via JMS only) by a simulation
of a heavy load. JMeter testing script capabilities are better then SpecJMS has. Also the
JMS restriction for MOM is not very comfortable, since Qpid-Dispatch can handle more
than only JMS connections such as Qpid-proton, Ruby or any connection type which is able
to use the AMQP protocol. The different connection type during the test can be tested by
Maestro as well. Maestro also implements interior data collection about the router itself,
which is very useful during the performance bug hunt.

10JMeter —https://jmeter.apache.org/

25

https://jmeter.apache.org/

4 Analysis and Design

Maestro is specially designed for the performance testing of the message broker. However,
with the significant Qpid-Dispatch growth, the need for performance testing emerges. In
the following we will analyze the message router service with focus on its capabilities and
methodology. Moreover we will describe the design of the Topology Generator and message
router Performance Module for Maestro, which are the main requirements to achieve the
actual performance testing of message router.

4.1 Used Technologies

The most of Maestro, such as the command parsing, reporting, clients abstractions and
so on, is written in Java language. But the whole Maestro is not a pure Java code. For
test specificatio we use Groovy instead. Groovy is basically a lightweight version of Java
with several advantages. In particular, Groovy scripts are more readable for those who
are not much familiar with Java code. Groovy scrips are also used as handlers for specific
commands for extension points, which is described in more depth in the Subsection 5.2.1.

On the other hand, Topology Generator is a new simple project. For easy integration to
another projects, quick development, and easy code preview it was developed in the Python
language. Whole generator is created as one package, which is available for installation on
any machine with installed Python version 2.7 and higher. The rest of the following will
describe the rest of the used technologies.

4.1.1 Ansible

Ansible [3] is a simple automation framework which allow users to automate daily tasks on
multiple nodes or containers. Basic types of tasks which can be automated by Ansible are:

e Provisioning —setups the various servers in the network infrastructure.

e Configuration management — changes configuration of an application, operation
system or device. Basically this allows starting, stopping and restarting services,
installing or updating applications or performing a wide variety of other configuration
tasks.

e Application deployment —automatically deploys the internally developed appli-
cation to specified systems with all dependencies.

Ansible scripts, called playbooks, are written in YAML language. This makes Ansible
scripts easy to read for humans and simple to manage. Another advantage is that the user
does not even need to know commands used to accomplish a particular tasks. All that is

26

needed is to specify what state does user wants the system to be in. Ansible is available
on multiple systems with really short list of dependencies; Linux based systems requires
Python installed, while Windows requires PowerShell; both systems requires SSH support.
Moreover, Ansible playbooks can be grouped together and create more complex scripts
called roles. These are open-source and available in the public repository.

Ansible

Management
Node node
10.0.0.1

Laptop

Deskto
P SSH Trust node
Server 10.0.0.2
node
10.0.0.3
node

10.0.0.1 Deploy

10.0.0.2 ey s

id-dispatch
10.0.0.3 Qpid-disp node
10.0.0.4 10.0.0.5

10.0.0.5

Figure 4.1: Example of Ansible architecture with several nodes. Inventory and Playbook
are passed to Ansible Management node, which executes the playbook on all node specified
in the inventory.

We use Ansible for several tasks; mainly to deploy systems on specific nodes. As we want
to run performance tests of Qpid-Dispatch over multiple topology scenarios it is necessary
to do system deployment quickly and automatically, which is easy with Ansible. System
deployment contains installation of Maestro, Qpid-Dispatch and other services based on the
testing scenario. The next usage is to create and deploy configuration files for each router.
This task runs the Topology generator and creates configuration files for each machine
based on the generator output.

4.1.2 Docker

Docker [1] is an open platform that provides developing, shipping, and running application
separately from the infrastructure. Basically Docker is a specific type of virtualization
technology. It allows to package and run an application in a loosely isolated environment
called the container. These containers are lightweight virtual machines running directly
within the host machine’s kernel. This means that one can run more containers than virtual
machines on specific hardware, and it is possible to run containers on virtual machines.

Docker containers are build up from a dockerfile where container attributes are specified
such as its OS, environment variables, or steps for installing applications. Output of build
command is then a docker image. This image is ready for running as a container with
another specific attributes such as exposed ports. Containers can be attached to same
network which allow communication between all containers.

27

DOCKER COMPONENTS

DOCKER_HOST

docker build Do daemo ~
/ \ ORACLE

docker pull =5
&

|
'
p
'
i }JG?MX cassandra
'
'
'
'

docker run

oo

f
\

Figure 4.2: Docker architecture with all its components and commands. Docker can pull
or build specific image and then run it in docker container.

Since docker is able to run services such as Qpid-Dispatch very easily and also allows
communication between containers, it is possible to deploy Maestro with proper SUT in
containers and analyze behavior in the container network or just run Maestro on single
machine. However, for proper performance results we need real machines, so docker con-
tainers we used only for Maestro development and trying some basic stuffs with Maestro.
The docker architecture is depicted in the Figure 4.2 [13].

4.2 Qpid-Dispatch Router

Qpid-Dispatch is a lightweight AMQP message router suitable for building scalable and
highly performant messaging networks. This router is an application layer program, w.r.t.
ISO/OSI' model, running either as a normal user program or as a daemon. In particular,
it has the following key features:

e Connects clients and brokers into an internet-scale messaging network with uniform
addressing.

e Supports high-performance direct messaging.
e Uses redundant network paths to route around failures.

e Streamlines the management of large deployments.

The following summary of Qpid-Dispatch router was composed based on knowledge avail-
able in [23].

1SO/0OSI—nhttp://www.studytonight.com/computer-networks/complete-osi-model

28

http://www.studytonight.com/computer-networks/complete-osi-model

4.2.1 Theory of Operation

The router accepts AMQP connections from senders and receivers and further creates
AMQP connections to message brokers or similar AMQP-based services. Through these
connections sender is able to reach receiver, which can be another client in the network
or a message broker. Note, that the client can exchange messages directly with another
client without involving a broker at all. The router classifies all of the incoming messages
and routes them between senders and receivers. The router is designed to be deployed
in topologies of multiple routers, preferably with redundant paths, to continually provide
connectivity in the case any router in the network fails. For routing Qpid-Dispatch uses
link-state routing protocols? and algorithms similar to OSPF or IS-IS to calculate the best
path (e.g. the path with the lowest cost) from sender to receiver through the whole network
and to recover from failures.

4.2.2 Addresses and Connections

Qpid-Dispatch is able to connect client servers, AMQP services, and other router imple-
mentations through network connections. The router provides multiple components and
settings for specifying the service on the other side of connection link as follows:

Addresses® —are used to control the flow of messages across a network of routers. Ad-
dresses can specify messages and they are also used during the creation of links since
links are bounded to the specific address field of a source and a target. The address
can refer to topics or queues that match multiple consumers to multiple producers.
There are two types of addresses:

e mobile—the address is a rendezvous between senders and receivers. The router
is then a message distributor.

e link route —the address is a private messaging path between sender and re-
ceiver. The router than only passes messages between end points.

Listener —is used to accept client connections. Listeners have several types that are
defined by their role:

e normal —the connection is used for AMQP clients using normal message deliv-
ery.

e inter-router —the connection is created to only link another router. Inter-
router connection can only be established over inter-route listeners.

e route-container —the connection is established to a broker or other resource
that holds a known address.

Connector —is used as an interface for creating a connection with brokers or other
AMQP entities using connectors. The same as listeners, connector has several types
that are defined by their role:

e normal —the connection is used for AMQP clients using normal message de-
livery. The router will initiate the connection but links are created by the peer
that accepts the connection.

2Link-state protocols—https://www.certificationkits.com/cisco-certification/ccna-articles/
cisco-ccna-intro-to-routing-basics/cisco-ccna-link-state-routing-protocols/

29

https://www.certificationkits.com/cisco-certification/ccna-articles/cisco-ccna-intro-to-routing-basics/cisco-ccna-link-state-routing-protocols/
https://www.certificationkits.com/cisco-certification/ccna-articles/cisco-ccna-intro-to-routing-basics/cisco-ccna-link-state-routing-protocols/

e inter-router and route-container —they are the same as listener’s modes.

To ensure the security the router uses the SSL/TLS (Sockets Layer and Transport Layer
Security)* protocol and its related certificates and SASL (Simple Authentication and Se-
curity Layerf’ protocol mechanisms to encrypt and authenticate remote peers. Router
listeners act as network servers and connectors act as network clients. Both of these com-
ponents may be configured securely with SSL/TLS and SASL.

4.2.3 Message Routing

Addresses have semantics associated with them. These semantics control how routers be-
have when they see the address being used. There are two ways how the router can route
messages based on addresses:

Routing pattern—defines paths that message with a mobile address can take. These
routing patterns can be used in both cases of message delivery; with broker or directly
through the router.

e Balanced —anycast® method in which multiple receivers are allowed to use the
same address.

e Closest —anycast method in which every message is sent along the shortest
path to reach the destination.

e Multicast —method in which every receiver with the same address receives the
copy of the original message.

Routing mechanism — defines the path to endpoint from sender to receiver.

e Message routed — message delivery is done based on the address in message’s
to field. The router checks the destination address of the message and finds the
same address in its routing table. The message is then sent to all links with that
address.

e Link routed —this method uses the same routing table as Message routing
with the difference that the routing occurs during the link-attach operation and
link attaches are propagated along the appropriate path to the destination. This
results into a chain of links from source to destination.

A message can be delivered with various degrees of reliability such as at most once, at least
once or exactly once.

4.3 Automatic Topology Generator

For proper testing of the various messaging systems we need multiple topologies with dif-
ferent components and different settings. However creating and deploying the scenarios
manually for each test scenario is rather slow and annoying, even with just a few scenarios.

3 Addresses in this discussion refer to AMQP protocol addresses, not to TCP /IP addresses.

48SL —https://tools.ietf.org/html/rfc6101; TLS —https://tools.ietf.org/html/rfc5246

SSASL —https://tools.ietf.org/html/rfc4422

6 Anycast vs. Multicast — anycast method sends data to every node in network, while multicast method
sends data only to specified group of nodes.

30

https://tools.ietf.org/html/rfc6101
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc4422

The solution to this problem is divided into two parts: a simple topology generator, which
transform metadata, defined by user, into configuration files for each component contained
in metadata, and automatic Ansible scripts, which deploy the whole topology to actual
physical machines. User only has to define is a metadata file, a single file for the whole
topology instead of single file for each component, and then start the Ansible script which
ensures configuration files generation and the deployment.

4.3.1 Topology Components

Messaging system consists of multiple components with specific roles. In our case, testing
topologies will contain clients, brokers, and routers. Clients refer to message senders and
receivers, but there is no need for specific configuration for each client at all. Message
settings is another case, but Maestro deals with it as was mentioned at Chapter 3.

Broker

Broker configuration file offers various settings and protocols such as specialized queuing
behaviors, message persistence, or manageability. The following list shows selected capa-
bilities of the broker:

e User access—allows guest or authentication access to users.

e Multiple Protocol Support— broker supports AMQP, MQTT, STOMP, Open-
Wire and Core protocols.

e Connections —can establish connection to another AMQP-based service such as
another broker or router.

e Queues—user can specify new queues in configuration file or allow auto-create op-
tion.

e Messaging types—refers to approach how to deliver messages, e.g. are point-to-
point or publish-subscribe approach.

e Logging level — broker offers the setup for different logging levels.

Note, that broker configuration is not implemented yet, but the design of the automatic
configuration generation will be shared with router configuration generation.

Router

Similarly to the broker configuration, the router offers various types of configurations. The
basics were explained in Subsections 4.2.2 and 4.2.3, but for better understanding of all
capabilities we recommend to refer to Qpid-Dispatch documentation [23].

4.3.2 Input and Output Format

The input format should be user-friendly and easy to update even for large topologies.
Hence, as the input we choose one single file (config.yml) in YAML" language, which
is similar to JSON format but is better readable for humans. Topology Generator needs
information about all hosts in the topology and which type of topology it should generate.
For that purpose there are two attributes in the configuration file; the first is the inventory
path which refers to the location of Inventory—file, containing all hosts in topology in the

31

specific format (for its specification refer to Appendix C). It is a simple configuration file
with enumeration of host names and their IP addresses. The other attribute is the type
of the topology it should generate. The user can either specify one of the simple types of
graph, such as line, circle, or complete, which does not need any other information except
Inventory or one can specify path to graph metadata, which are described in Subsection
4.3.3 in more details.

On the other hand, the output format should be easy for automatic parsing. The best
format for machine parsing in Ansible is JSON or YAML format, since both of them can be
loaded with same functions. Output of the generator will be then passed to an Ansible script
immediately after the creation without any user intervention. However, user should have
option to see the generator output in YAML format, because in case of larger topologies
JSON is badly readable. Hence output will be one JSON file with variables for template.
Each node from Inventory will have its own variables separated from variables of other
nodes. Scheme of the input and output for Topology Generator is shown in the Figure 4.3.

Inventory Toool
opology .
| j | Generator @

config.yaml variables.json

Graph Metadata

Figure 4.3: Topology generator takes input YAML configuration containing specification of
graph metadata and outputs sets of variables in JSON format.

4.3.3 Graph Metadata

The technology used for the actual implementation of Topology Generator is NetworkX, a
Python package for creation and manipulation of complex networks. This package offers
features for creating graphs, multigraphs, random graph generators, plot created graph,
and many more. NetworkX also offers graph import and export in YAML structured file,
which is useful as a graph metadata; simple example of file is shown in Appendix C.

In these metadata user can specify any setting for each node. For example, user can
specify the listener for router 1, or connector for router2 as you can see in the example
below.

directed: false

graph: {}

nodes:

- type: router
id: routerl

listener:
- host: 0.0.0.0
port: 1080

role: inter-router
- type: router

"YAML —http://docs.ansible.com/ansible/latest/YAMLSyntax.html

32

http://docs.ansible.com/ansible/latest/YAMLSyntax.html

id: router2
connector:

- name: routerl
host: routerl
port: 5675
role: inter-router

multigraph: false

From these metadata NetworkX creates two nodes with type, id, and listener or connector
attributes. These attributes will be used to generate configuration files for each node. All
possible attributes that user can specify for each node are available in Appendix C.

However, specifying all attributes of each node is not very user-friendly approach, es-
pecially in the case of large topologies. So user can only specify nodes and links between
them and generator will add all necessary default attributes in order to establish connection
between nodes. The example of this metadata file can be seen in Appendix C.

4.3.4 Topology Deployment

Every node specified in the Inventory has to receive proper configuration files for services
running on it. This job is handled by the Ansible, since it can connect to all nodes from
Inventory and copy configuration files to proper destination folders. Ansible script loads
data from Topology Generator and creates configuration files based on loaded variables and
the common template for Qpid-Dispatch. The created file will then be sent to the proper
node based on node name from Inventory, which has to be same as router name specified
in generated variables. The scheme of configuration deployment is depicted in the Figure

=

router 1 config

=

router 2 config

f— |—> Ansible Script

variables.json

2

router n config

Figure 4.4: The scheme of configuration files deployment to the nodes The Ansible script
takes input file with variables generated by Topology Generator, fills the configurations
template and deploy them to corresponding nodes.

33

4.4 Agent Performance Module

The architecture of Maestro (as depicted in the Figure 3.1) originally could not use all
performance testing and network recovery possibilities of the Qpid-Dispatch. Hence, for
better performance analysis and measurements it was necessary to design and implement
additional functionality for Maestro.

In the Figure 4.5 we show updated version of Maestro architecture. Proper performance
testing of router and network analysis with few routers needs special agent, which can
manipulate each node. In particular, Maestro should be able to shut down one of the router
node and collect data about network behavior during this situation. All these actions will
be handled by the new back-end component called Agent.

In the Figure 4.6a we show the simple scheme of topology with one agent monitoring
the router2. In this case communication passes through the router2 and messages are
delivered to receiver without problems. The Figure 4.6b demonstrates the shutdown of
router 2 by the agent. In that case, the network will choose the redundant link through
router 3 in order to pass messages. This scenario can then answer the question How does
router shutdown influence the latency between sender and receiver?

Agent Agent

hut-down
‘ Receiver ‘ ‘ Sender ‘ shut-do Receiver

command
@ N N

Sender

x
-

K
Ul

Router 4

(a) Network with router agent. (b) Router shut-down demonstration.

Figure 4.6: A simple network with demonstration of router shut-down.

Communication between cluster back-end and user client is realized through Maestro
Broker and so for proper message distribution a new topic has to be added. As was men-
tioned in Section 3.4, Maestro Clients communicate with back-end via specialized com-
mands. Router Agent will accept a new set of specialized commands for router control.
This set has to be added to existing Maestro Clients. All additional components or com-
ponents that required update are highlighted by red color in the Figure 4.5. The example
of simple testing topology consisting of two routers and two brokers is also included in the
Figure 4.5.

4.4.1 Extension Points

After although research and discussion with engineers we decided to develop the agent as a
service with dynamic command execution, which will be able to run any specific code. At
the begging of the test, the agent will receive the command to download a repository with

34

specific scripts serving as an action handlers. The path to repository will be the payload
of one of the new commands. After that, the agent will listen on the Maestro Broker
and wait for user’s command to execute. This command will transport the name of the
handler script as a payload of the Maestro’s note. The agent will then execute script from
payload as an action on the node. In particular, the router restart handler can be part of
the downloaded repository and then can be performed after receiving user commands with
payload equests/router__restart.groovy . This functionality makes the agent dynamic, and
offers the user an ability execute any specific action he wants.

4.4.2 Communication with Agent

For the communication inside Maestro testing cluster we use the Maestro Protocol, which
was described in the Subsection 3.2. Maestro Clients have to know how to communicate
with this new component in the cluster and so it is necessary to add new communication
commands. The following lists new commands which should be added:

e MAESTRO_NOTE_START_AGENT (18)—start the agent service.
e MAESTRO_NOTE_STOP__AGENT (19) —stop the agent service.

e MAESTRO_NOTE__AGENT_SOURCE (21)—set path to user commands
handlers.

e MAESTRO_NOTE_USER_ COMMAND (30) —execute user’s specific com-
mand.

4.4.3 AMQP Inspector

The important part of the performance testing are measurements of internal metrics of
SUT. Maestro offers Maestro Inspector for this kind of measurements. However, the current
version can monitor only Broker, because Inspector is implemented for the specific interface
provided by the Broker. Since Broker is written in Java and provides access to JMX® via
Jolokia”, we cannot use current implementation of the Inspector for the Qpid-Dispatch
as well. The router offers AMQP management for interaction with the router on the fly,
which is different than Jolokia access. The Jolokia access is based on HTTP/JSON format
message exchange between requester and SUT, while AMQP Management is based on
AMQP messages with specific format.

The router offers the following information after proper AMQP request to an opened
up listener with specific properties:

e name —this property is always set to string property self, which refers to itself
object.

e operation — AMQP management offers classic CRUD operations. For inspect mes-
sage we will always use the option called QUERY.

e type—this property represents the interior package which will parse the request. We
will use org.amqgp.management.

e entityType— this property is configurable. We use there several options with prefix
org.apache.qpid.dispatch. based on the request purpose. The options for request
are:

8JMX —http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
9Jolokia—https://jolokia.org/

35

http://www.oracle.com/technetwork/articles/java/javamanagement-140525.html
https://jolokia.org/

— router — general informations about the router.

— router.stats— detailed informations about the router.

— router.link— informations about route links.

— router.node— general informations about neighbour nodes.
— router.address —informations about addresses on the router.
— connector —informations about connections.

— allocator —informations about memory metrics.

— config.autolink — informations about created auto links.

— config.linkRoute — informations about created link routes.

e body —message payload, which is usually an empty list. Exceptions are auto links
and link routes requests, which needs additional information in the body.

Collected Data

Data collected by the AMQP Inspector are different than those collected by current version
of Inspector. After the discussion, we decided to collect data about general statistics,
router links and memory. Note, that each data set has multiple data columns, which are
all available in Appendix D. The following describes the most important data collected by
the AMQP Inspector:

e Timestamp —the date and time for the data sample in the format YYYY-MM-DD
hh:mm:ss using the W3C defined standard for datetime.

e General Statistics — basic informations about the router such as its active connec-
tions, addresses, auto links, accepted messages and etc.

— Address Count —number of active addresses at current time.

— Connections Count — number of active connections at current time.
e Router Links — informations about all router links which were opened to the router.

— Accepted Message Count —number of accepted messages at current time.

Delivered Message Count —number of delivered messages at current time.
— Released Message Count —number of released messages at current time.

Undelivered Message Count—number of undelivered messages at current
time.

e Memory Statistics —informations about allocated memory by the router.

— Total Allocated Memory —total allocated memory.
— Memory Allocated by Threads—total memory allocated by threads.

Each data set is then converted to a line chart, which represents collected values for

each request. Data collected by senders and receivers remains the same as in the current
version of Maestro.

36

Maestro Architecture

Infrastructure
Maestro
Broker
Active-MQ
Test node [i]
Maestro Clients [
[
User PC Tobi
opics
P MPT Backend
/mpt/maestro Send
Maestro Java /mpt/daemon/sender ender
(Java + Groovy)
1 /mpt/daemon/receiver n
; <__> mp . v
— /mpt/daemon/notifications
Maestro Reporter /mpt/daemon/agent
(Data Reporting)
-
L

D

MPT Data Server
(HTTP)
n
Testing Topology
<+

Broker 2

Broker 1

Figure 4.5: The architecture of updated Maestro for testing of the Qpid-Dispatch router.
The arrows represent communications between the Maestro components and with the SUT.
The line value represents the number of connections where default is 1. The C front-end is
no longer need for this version.

37

5 Implementation

This chapter describes the actual implementation details of all components, described in
the Chapter 4. The main part focuses on the Agent module and AMQP Inspector for
Maestro, which we implemented in Java and Groovy languages. The other part describes
the Topology Generator — Python package for automatic generation of dispatched topology
based on user’s metadata. Data collecting and reporting done by Maestro parts has already
been mentioned in the Chapter 4.

5.1 Topology Generation

Qpid-Dispatch has a lot of configurable attributes, which can influence the router behavior.
These attributes can be set up with an AMQP management tool called gdmanage' or
one can specify them directly in the configuration file. However, qdmanage needs human
interaction. It is more comfortable to create a configuration file for each specific test case.
Hence, this initiated implementing of automatic Topology Generator.

In case of network with multiple routers, it is uncomfortable to update configuration files
for each router on a specific node. Topology Generator introduces an option to update only
a single file with router specifications and leave generation and deployment to an automated
script. The actual generation takes few simple steps to achieve correct configuration files.
These steps are used in Ansible script and are described in the following.

5.1.1 Configuration File Generation

It is important to note that each configuration file is not generated by Topology Generator
itself, but by Ansible playbook. Why do we need such approach? Since Qpid-Dispatch
is getting new versions every few months, they can change names of any configuration
attributes or even deprecate them. This causes the problem, that when Qpid-Dispatch is
updated, then the code of Topology Generator has to be reviewed and updated as well,
otherwise one risks syntax errors in the configuration files. So such approach is not very
stable, and hence the simple solution is to let Ansible do the final generation.

The trick is, that Ansible is able to fill-up any kind of passed Jinja2”? template only
with data which are available. Basically, the Ansible playbook will get the configuration
template and variables for router configuration files and create a proper configuration file.
The script simply iterates through template and fills-up all available attributes. This process
is repeated for every router machine in the Inventory file. Input configuration variables are
in JSON format, and Ansible can recognize which variables are for particular machine.

lqdmanage —https://qpid.apache.org/releases/qpid-dispatch-1.0.1/man/qdmanage.html
2Jinja2 —modern and designer-friendly templating language for Python http://jinja.pocoo.org/docs/
2.10/

38

https://qpid.apache.org/releases/qpid-dispatch-1.0.1/man/qdmanage.html
http://jinja.pocoo.org/docs/2.10/
http://jinja.pocoo.org/docs/2.10/

5.1.2 Template Generator

Output configuration files are strictly based on input configuration template. This means
that Ansible needs the input template with specific attributes for each version. However,
Qpid-Dispatch offers a solution how to construct this template. Attributes are available
inside a JSON file in the installation folder of Qpid-Dispatch. To process this JSON file
and create resulting configuration template we use a tool called qdrouter-jinja2?.
Qpid-Dispatch configuration file is divided into the multiple section where each sections
has its own attributes. For example there is a router section with router name, or mode,
and ssl section with security attributes. Each section can be specified multiple times, but
usually only the last one found is used. The exceptions are connectors, listeners, addresses
and link routes that can specify multiple connection points and routing types on single
router. In the Algorithm 1 you can see pseudo-code of template generation process.

Input: attributes file—input file in JSON format
Output: output file in Jinja2 format
var output = 77
for line in attributes file :
if line.is_attribute() :
‘ output += line.attributeToJinja2()
else if line.is_section() :
‘ output += line.sectionToJinja2()
else
‘ output += line

© 00 N O Ok W N

output.strip()
return output

=
o

Algorithm 1: Template generation by qdrouter-jinja2.

From the pseudo-code you can see that there are two kind of wrappers for processing
the JSON. Their function is to make configuration sections and attributes optional and
repeatable which is achieved by wrapping the sections and attributes with Jinja2 code.
The attribute wrappers processes each attribute line into the following template snippet:

{% if section.attribute is defined %}
attribute: {{ section.attribute 1}}
{% endif %}

This code in template specifies, that if Ansible knows the variable section.attribute,
it will add a line with that attribute name and variable value into the configuration file.
Key words section and attribute are just placeholders for real names such as connector for
section and host for attribute. Output can then look like the following line:

host: 10.0.0.1

The section wrapper is more complex, because it has to wrap the start and the end of
the section. This is handled by class methods _enter_() and _exit_() which allows you
to implement objects that execute _enter_() at start and _exit_() at the end of some

3qdrouter-jinja2 —https: //github.com/rh-messaging-qe/qdrouter-jinja2

39

https://github.com/rh-messaging-qe/qdrouter-jinja2

statement. Basically this class is dynamically created for each section and these methods
are then invoked before first and after last attribute. The _enter_() method wraps start
of each section with following code:

{% if item.section_name is defined %}
{% for section_name in item.section_name %}
section_name {

The __exit__ () method closes the section with the following piece of code in the Jinja2
template:

}
{% endfor %}
{% endif %}

Since qdrouter-jinja2 parses JSON data from the installed version of Qpid-Dispatch on
remote node it guarantees that the template will always correspond with the specific router
version. The template is saved in /tmp folder on the remote machine where Ansible scripts
can fetch it into the local folder and fill it up with data.

5.1.3 Topology Generator

Topology Generator is the main actor in configuration generation and deployment. It
process configuration variables for Ansible deployment scripts from the user specification.
Topology Generator requires two parameters: the path to the Inventory and the path to
the graph file or topology type.

Path to the Inventory —Inventory is simple configuration file with list of nodes, con-
nected to the network. Generator retrieves node names and types (i.e. router or bro-
ker) and use them during the generation of variables. The generator creates specific
sections and attributes based on node and graph types. Since broker configurations
are not generated by this tool, generator uses information only about specification of
link routes to neighbours. Broker configuration is based on XML files, where user can
specify Broker attributes. However, the future goal is to generate configuration for
Broker as well.

Path to Graph file— Graph file is a simple YAML file which specifies node distribution
in the network. It contains at least node name and links to another nodes. Beside
the name, user can easily specify for each node informations such as constructors,
listeners, SSL profiles, etc. The whole file is loaded during the initialization and is
processed with the Topology Generator.

Topology Type — Topology generator can create topologies without graph file, but then
it requires the network type that will be generated. For example the topology type
can be a line which puts all nodes into one line and generates connections between
them.

Inner representation of network is realized by Python library NetworkX*. It creates a
graph as an object and offers manipulation with its attributes which are objects of nodes

4NetworkX —https://networkx.github.io/documentation/latest/

40

https://networkx.github.io/documentation/latest/

and links. Topology Generator is able to store information about network configurations
as attributes of these objects. During the graph initialization, the generator stores basic
information about nodes such as the name and the type from inventory or some additional
information from the graph file. Basic algorithm of topology generation is depicted in the
Algorithm 2.

However, the generation of each configuration section is more complex and is slightly
different for each section for connections to another nodes. The actual generation is split
into two parts based on the user’s arguments: the first is the generation of the default
connections and the other is the generation of user specific sections from the metadata file.

Default Connections — default connections correspond to configuration for establishing
connection between two devices in the network. To achieve this one has to configure
listeners, connections, addresses and link routers (depending on the second machine)
on each router. These sections can be easily automatically generated only with the
minimal knowledge about the network. The default connections are generated au-
tomatically when user specifies only hosts and topology type. The generator takes
neighbours of each machine. Generator’s output in that case is a file with variables for
fully functional connections between machines. During the generation from the graph
file each node has attribute which specifies if user wants the default connections. The
Algorithm 2 captures the default generation process.

User Specific Sections —these sections are not needed for the proper communication
inside the network. An example can be SSL or auto-links settings. The generator
loads data about these sections from graph file. Qpid-Dispatch has a lot of settings,
hence the generator does only the basic connectivity configuration without any specific
settings if the user does not specify otherwise. You can see the user specific sections
generation in the Algorithm 2 as the part of the first for statement. This generation
part is done alongside with default connections generation.

Used algorithms are pretty straightforward. Since the generator is able to load IP
addresses from the inventory there has to be a mechanism for automatic generation of
proper port numbers for listeners and connectors. The problem is, that connectors of node
X and listeners of directly connected node Y has to have same port numbers. It means,
that node X connects to a specific port on node Y and node Y listens on that port. The
initial port number is 5672, the default AMQP port, and it is incremented with each newly
created listener. Hence, the listeners must be generated first on all nodes and then the
connectors can be generated. This allows the access to port numbers of neighbor listeners
via a simple method and explains the double loop over nodes in the Algorithm 2.

41

Input: Inventory, Graph File/Topology Type

Output: output file in JSON format

var inventory = parse_ inventory(Inventory)

var graph = create_ graph(inventory, Graph File/Topology type)
var output = {}

for node, neighbors in graph.adjacency() :
output.update(generate_listeners(node, neighbors))
output.update(generate_addresses(node, neighbors))
output.update(generate__specific(node, neighbors))

for node, neighbors in graph.adjacency() :

connectors, link routes = generate connectors(node, neighbors)
output.update(connectors)

output.update(link_routes)

© W N0 s W N

= e
= o

Juy
N

return output

Algorithm 2: Pseudocode of default connectivity generation.

Function: generate connectors()

Input: node—mnode from graph, neighbors
Output: lists of connectors and link_routes
1 var connectors = ||

2 var link_routes = []

3 for neighbor in neighbors :

4 if neighbor.is_router() :

5 ‘ connectors.append(connector__setting)
6 else if neighbor.is_broker() :

7 connectors.append(connector__setting)
8 link_routes.append(link_route_ setting)
9 return connectors, link__routes

Algorithm 3: Connectors and link routes generation. The algorithm describes function
generate_connectors().

The Algorithm 3 shows the generation process of connectors and link routers. The
connectors are generated for other network service (router/broker), but link routes are
generated only in the case of the connection to the broker. The link route section then
contains name or address of the connected broker, name of queue to which router will send
the messages and specification of link route direction (input or output). For full-duplex
connection to the broker one needs connector and two link routes from the router to the
broker.

5.1.4 Deployment

At this point, everything is ready to create the Ansible playbook, to run all necessary
tools and to deploy generated configuration files. Note, that each task can be executed on
different machine based on the inventory.

42

The playbook combines all previously mentioned tools and also uses features from An-
sible role ansible-gpid-dispatch® such as start and stop handlers. These steps can be added
in any playbook or role, and can be used for automatic topology generation and deploy-
ment. The necessary inputs are Inventory and topology metadata for each test-case. In the
following description you can see the list of all deployment steps, that are executed on the
control node (node where we use the playbook):

1. Install the Topology Generator — Topology Generator is the main actor in the
topology deployment so it is necessary to have it installed. Ansible takes care of it in
the playbook.

2. Run the Topology Generator — Topology Generator needs configuration files for
proper execution. In the play one just needs to specify the path to configuration files
and Ansible will do all other necessary steps.

3. Include variables into Ansible —this step loads the generated variables into the
memory. After this step, the script is ready to fill-up the template on remote machines.

Since Ansible offers smart system with variables inside the playbooks, one can assign
all paths to configurations files to variable in the script or pass them with option during
the playbook execution start. After these steps we are ready to execute the last steps on
the remote nodes:

4. Install qdrouter-jinja2 and generate templates — qdrouter-jinja2 is used to gen-
erate the template. We need to install it on all of router nodes, because each router
can have different version and it can affect the configuration file with deprecated
attributes. After the successful installation the templates are created.

5. Fill templates on remotes—the script fills-up the template on each node. Since
it has information about all nodes from configuration variables, it simply compares
hostname with key from variables to assign proper data to each host.

6. Restart Qpid-Dispatch — after the change of configuration, we need to restart each
machine and reload the configuration.

5.2 Qpid-Dispatch Performance Module

This section focuses on Maestro Agent implementation and necessary updates of all other
Messaging Performance Tool parts such as commands updates, extension of the Inspector
or report changes. The Agent was implemented in Java and Groovy languages.

5.2.1 MPT Preparations

The first step during the development was to update the Maestro project structure by
adding the new module called maestro-agent. The agent is designed as the new independent
service, which can be run after the building of the package by Maven. At first, we need ti
implement the main function for the agent, which is built with each new package. After
the creation of main we had to create assembly.zml which tells Maven which files has to be

5 Ansible-qpid-dispatch — Ansible role for install and setup Qpid-Dispatch. The role is available at https:
//github.com/rh-messaging-qe/ansible-qpid-dispatch

43

https://github.com/rh-messaging-qe/ansible-qpid-dispatch
https://github.com/rh-messaging-qe/ansible-qpid-dispatch

used for creation of new package during the build. The last step is to update all pom.zml
files, where are specified all dependencies and then we are ready to build and start the
implementation.

5.2.2 Agent Module

As it was mentioned in Subsection 4.4.1, the agent is an independent service running on
the testing node. Since Maestro already has a similar services, we can reuse the already
working parts. The Maestro has a class MaestroWorkerManager which represents a simple
Maestro peer. This class has a several important methods which are inherited and used by
Agent as well:

e connect () —this method connects each peer to the Maestro Broker. Based on the
peer function, it also subscribes the peer to all needed topics. For example, the sender
peer does not need subscription to agent commands topic. When this method throws
an exception, the peer was not able to connect to Maestro Broker and the test fails.

e noteArrived() —this method catches incoming notes from Maestro Broker and in-
vokes action based on the note.

e handle() —this method handles each received note. We overload this method to
invoke specific handler method based on the received note type. Usually, the handle ()
methods in MaestroWorkerManager class only logs actions. For another functionality
we have overridden the specific implementations of each peer.

Every action handler script is written in Groovy, and so Maestro needed a Groovy script
executioner. For this purpose, we created the class GroovyHandler. This class basically
checks the handler file whether it is executable and then tries to execute it. The handler
file location is specified by the note payload and there one can specify more than one file;
GroovyHandler checks and execute all of the files.

The main part of the Agent is the method called callbacksWrapper(). Since the
Agent overrides handle () method to execute scripts from external point, every handle ()
method in the agent calls the callbacksWrapper(). The basic functionality is shown in
the Algorithm 4. The reason why sendReply0k() is sent everytime is that we need to know
if thread was started. For example we can start the thread with the command execution 5
minutes after the start. So we need the information if thread started successfully and then
the information how the thread execution finished. However, the information about thread
finish is sent by the handler itself. This is also reason why for every external point handler
creates its own thread and naturally, the agent must serve other handlers during this time,
and not wait 5 minutes for one of them to finish and then handle the others.

44

Function: callbacksWrapper()
Input: externalPointPath, codeDir, note
Output: sendReplyOk() or sendReplyFail()

1 var thread = Thread()
2 try
3 var groovyHandler = GroovyHandler()
4 groovyHandler.setInitialPath(externalPointPath)
5 groovyHandler.set WorkerOptions(get WorkerOptions())
6 groovyHandler.setMaestroNote(note)
7 thread.start(groovyHandler.runCallbacks())
8 catch
9 sendReplyFail()
10 sendReplyOk()

Algorithm 4: Basic functionality of callbacksWrapper () method. This method create
new thread for each extension point and tries to execute it.

In new threads we execute runCallbacks () method, which load all files from extension
point directory and tries to execute them. This method is in a specific class, which con-
tains parameters for each execution. The parameters are originally contained in the note’s
payload. The Algorithm 5 captures runCallbacks () method.

Function: runCallbacks()
Input: groovyHandler as this class
Output: sendReplyOXk() or sendReplyFail()

1 for file in extensionPointDirectory :

2 try

3 var grovyObject = loadFileAsGroovyObject(file)

4 groovyObject.invokeMethod(”setMaestroNote”, this.maestroNote)

5 groovyObject.invokeMethod(”set WorkerOptions”, this.workerOptions)
6 groovyObject.invokeMethod(”setMaestroClient”, this.client)

7 groovyObject.invokeMethod(”handle”, this.context)

8 catch

9 sendReplyFail()

10 sendReplyOk()

Algorithm 5: The method runCallbacks() loops over each file in the extension point
directory, tries to load each file and executes it.

The other important method of Agent is the override handle () for AgentSourceRequest
note. After this note is received, the handle () method fetches a git repository URL from
the note and tries to clone it. The current version offers to clone any public git repository
and even the specific branch of the repository.

Agent Capabilities

The current implemented version of the Agent offers much more features than was originally
designed. The Agent does not focus only on Qpid-Dispatch actions handling, but it can
invoke action on node itself by executing extension points scripts. This makes agent usable

45

also for Broker nodes, where it can simulate a real network behavior during the testing.
The agent can also run third party software on the node during the test, which can simulate
any kind of the unexpected behavior.

The agent is a specific kind of Maestro Worker. This means, that agent connected to
the Maestro Broker can publish messages during the test about its execution status or any
additional information. You can see a simple communication with agent notes handling
in the Figure 5.1. The notes are send from the front-end through the Maestro Broker.
Agent then invokes a specific handle method based on the received note. Inspector keeps
inspecting the Qpid-Dispatch by requests about his state every 15 seconds.

Maestro
Broker
Active-MQ

{ Front-end } /

handle(userCommand1)

handle(AgentSourceRequest)
GitHub Agent

repository transfer
inspectRequest()
AMQP Inspector /

Testing Node

D

MPT Data Server
(HTTP)

Figure 5.1: Communication scheme inside the Maestro with the agent. Scheme shows the
agent git repository download and then handling the proper note defined by the user. The
Figure also shown the SUT communication with the AMQP Inspector.

5.2.3 AMQP Management Inspector

The collection of information about the router itself is not gathered by the agent. For this
purpose, we developed a new type of Maestro Inspector specific for AMQP Management.
AMQP Management is layered on top of the AMQP protocol and it access the inner data
about the router by a simple requests and responses. Qdmanage tool already has imple-
mented operations for AMQP Management, however, qdmanage is a Python tool and we
want to integrate only Java code with AMQP Management requests into the Maestro. While
AMQP Management offers CRUD operations for router configuration and inter informa-
tions, for AMQP Inspector we are fine with only Read operation to get specific information
about running the instance of Qpid-Dispatch.

Basic Evaluation

The Maestro Inspector is designed to run a specific Inspector class based on user definition
in the testing script. Currently, Maestro offers ActiveMQ Inspector for the Broker and

46

AMQP Inspector for the Router. The Inspector will receive the note with inspector start
command, which carries string payload. This payload is the name of the specific inspector
implementation that will be started. The mechanism of starting the AMQP Inspector is
depicted in the Figure 5.2 and in the Algorithms 6.

startInspector('""AMQP Inspector')

Maestro

Maestro Inspector

-~

Broker
Active-MQ
A

v

Front-end ‘

\

Maestro Inspector
>
Interface

~

ArtemisMQ
Inspector

Start
AMQP Inspector

AMQP Inspector

/

.y

Inspect
Messages

Inspector send request
every 5 seconds
(default time)

Figure 5.2: The inner mechanism of Maestro Inspector during the receive start inspector
note. One can see the note exchange and choose of specific inspector class based on the

note’s payload.

Function: handle()

Input: Maestro note — startInspector
Output: sendReplyOXk() or sendReplyFail()

var inspectorClass = note.getPayload|()

try

var inspector = Inspector(inspectorClass)

thread.start() sendReplyOk()

catch
‘ sendReplyFail()

1
2
3
4 var thread = Thread(inspector)
5
6
7

Algorithm 6: Handler method for startInspector note which creates instance of specific

inspector implementation.

47

Function: start()
Output: sendReplyOk() or sendReplyFail()

1 var routerLinkInforWriter = RouteLinkInfoWriter()

2 var memoryInfoWriter = MemoryInfoWriter()

3 var generallnfoWriter = GenerallnfoWriter()

4 try

5 var currentTime = System.currentTimeMillis()

6 connect ToRouter()

7 var dataReader = DataReader()

8 while canContinue() :

9 routerLinkInforWriter.write(current Time, dataReader.collectRouterInfo())
10 memoryInfoWriter.write(current Time, dataReader.collectMemoryInfo())
11 generallnfoWriter.write(currentTime, dataReader.collectGenerallnfo())
12 Thread.sleep(5000)

13 sendReplyOk()
14 catch

15 sendReplyFail()

Algorithm 7: Method for starting new instance of the Inspector. This method continu-
ously sends requests to the SUT, collects, parse and write the response into csv file.

l Sleep for l

specific time

Create Collect Parse the
Send request
Message response response

Message is created

by filling specific

JMS structure with
described data

Message is sent to
the consumer
(router) by
producer (AMQP
Inspector)

AMQP Inspector
starts message
collection for

specific period of
time (timeout)

Received message
has to be parsed
into better
collection with
data selection

Figure 5.3: The whole Inspector process including message creation, message sending,
collecting and parse.

The AMQP Inspector uses the request-response message mechanism with the SUT. The
inspector creates message using Java library Qpid JMS® as specified in the Subsection 4.4.3.
Since we want to collect as much relevant data as possible, we are sending three’ request-
response messages with different entityType option every 5seconds during the whole test.
For the response collecting it is necessary to create a temporary queue, that is used by
the router as response destination. The destination is contained in the field response-to.
The actual request message is represented as an object with type of JMS Message. The
main Inspector’s process mechanism is described in the Algorithm 7, while the message
request-response mechanism is depicted in the Figure 5.3.

5Qpid JMS —nhttps://qpid.apache.org/components/jms/index.html
"Three specific requests to AMQP Management are enough to collect all data which are needed.

48

https://qpid.apache.org/components/jms/index.html

6 Experimental Evaluation

This chapter summarizes results of the performance testing and experimental evaluation of
Maestro. We split the experiments into two parts. The first performs a basic measurement
of Maestro 1.3.0 which includes Maestro Agent and AMQP Inspector. During this experi-
ments we focused on reclaiming the highest possible throughput of singlepoint topology of
Qpid-Dispatch (message router) and Apache ActiveMQ) Artemis (message broker) and mul-
tipoint topologies with three nodes of Qpid-Dispatch and with Apache ActiveMQ Artemis
in the middle. These experimental topologies are depicted in the Figure 6.1. The later
series of experiments are focused on behavior testing of topologies, which involves Message
Router reliability and recovery testing. For experimental evaluation we used Qpid-Dispatch
stable version 1.0.0 and Apache ActimeMQ Artemis stable version 2.3.0. Note, that Qpid-
Dispatch will be referred as message router and Apache ActiveMQ Artemis as message
broker in this chapter.

Since the testing was executed over multiple topology types, we used Topology Gener-
ator for quick automatic changes of topology. Each test was executed against established
topology where all components were newly installed and restarted between each test sce-
nario. This was done during the cleaning stage. For experimental evaluation we used
machines specified in the Table 6.1. The reason why clients use more powerful machines is
that we needed more machines for SUT, but only two IBM Xeon machines were available
during the experimental evaluation and we needed at least three machines for the SUT
nodes. For proper comparison we need all SUTs on the same machine type.

Component Machine | CPU | RAM [GB]
SUT Opteron 8 8
Clients IBM Xeon 16 16

Table 6.1: Machines and their properties, which were used for the experimental evaluation.

6.1 Basic Performance Measurements

Maestro works as the orchestration system, and requires proper infrastructure before one
can run any test for experimental evaluation. The architecture of Maestro, described in
the Chapter 3, specifies that in ideal scenario one needs at least four machines for running
a simple test: maestro broker, sender, receiver, and SUT. The amount of needed machines
obviously rises with more complex scenarios and larger networks. Examples of used gen-
erated experimental topologies are depicted in the Figures 6.1. For these configurations
we compared the throughput and latency of these combinations. During all measurements
we used Maestro Inspector to inspect one of the SUT depending on the topology type.

49

Note, that for Message Router we used AMQP Inspector and for message broker we used
ActiveMQ Inspector. The topologies were picked based on current performance testing

and

known topologies, where some performance degradation was already found during the

previous testing.

Maestro
Sender

Maestro Maestro
Sender Inspector

Maestro

!

Maestro Maestro Maestro Maestro Maestro
Inspector Receiver Sender Inspector Receiver

D

Router 1 ; P Broker 1

Maestro

!

(a) Topology with a single router node. (b) Topology with a single Broker node.

Maestro Maestro
Sender Inspector

Maestro
Receiver

Maestro
Recelver

Figu
expe

@ ;@ @ @ » Broker 1 > RouterZ

(c) Topology consisting of routers nodes only. (d) Topology with Broker in the mlddle

re 6.1: Examples of experimental topologies created for basic performance testing and
riments with Maestro. The arrows indicates the communication path between topology

components.

Each test case has specific parameters which can be defined by the user. The summary
of available parameter is in the following list:

MESSAGE__SIZE —message size in bytes.
PARALLEL__ COUNT —number of connected clients to the SUT during the test.

TEST__DURATION — test duration specified as time value (e.g. 120s, 10m) or
number of messages (10,000,000) to transfer.

RATE —rate of each connected client; 0 represents unbounded test.

INSPECTOR__ NAME —name of inspector implementation (Activemqlnspector
or InterconnectInspector).

MANAGEMENT_INTERFACE — URL where inspector will inspect the SUT.
MAESTRO_BROKER — URL to Maestro Broker.

SEND_ RECEIVE_ URL (singlepoint only) — URL where sender and receiver con-
nects.

SEND_URL-—URL where sender connects.

RECEIVE_URL-— URL where receiver connects.
EXT_POINT__SOURCE —URL to public git repository with code handlers.
EXT_POINT__BRANCH — branch which should be used for ext point repository.

50

e EXT POINT_COMMAND — command executed by the Agent.

6.1.1 Throughput

We measured throughput only by load generators — Maestro Sender and Maestro Receiver.
Load generation depends on the test properties as one can see the test properties for each
test case in the Table 6.2. Maestro is able to create an unbounded rate test, during which
it generates as much load as it can. This type of test was used to reach the maximum
handled rate of message router and Message Broker. The unbound rate during the test is
achieved by setting the environment variable RATE to value 0. The throughput test cases
are focused on maximum throughput of simple or complex topologies.

Singlepoint Multipoint
Test Property Router Broker Full Router With Broker
MESSAGE_SIZE [B] 256
PARALLEL_COUNT 5
TEST_DURATION [min.] 15
RATE [msg - s 1] 0

Table 6.2: Test case settings for throughput measurements.

Single Node

The first tests were ran against the single node topologies, which are depicted in the Figures
6.1a and 6.1b. These topologies contains only one SUT node, which is forwarding messages
from sender to receiver. During the test the SUT node is inspected by the proper Maestro
Inspector.

The measured throughput is depicted in the Figure 6.2 where one can see the comparison
of tests with 15 minutes duration, which tries to achieve the highest possible throughput.
One can see that the maximum throughput of message router, as a standalone network
component, can reach around 90,000 messages per second. On the other hand, the lone
Messaging Broker reaches only about 30,000 messages per second. This throughput dif-
ference is caused by the fact, that Broker stores all of the messages in the memory until
clients want them. This is the main feature of the broker, because it operates as an mes-
sage distributor in the network. On contrary the router only routes the messages to the
destination so it does not need to store message in the memory.

51

Throughput

120000

Router
108000 I Broker

96000 ' ' - : :

72000 [~

60000 [~
48000
36000 [
24000 [

Message Rate [msg - s7]

12000

0 L i L i L i L i L
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]

Figure 6.2: Chart of the maximum throughput of router and broker during the singlepoint
test case. One can see the significant difference between those two components.

In the Figure 6.3 we can see the memory usage of message router during the test. We
can see here, that the totally allocated memory is around 45 kB from which it is used only
around 13-28 kB. If we compare this with the memory allocation for the Broker, we can see
the huge difference between these values. The memory allocated for the Broker is depicted
in the Figure 6.4 and we can see that the allocated memory is around 2 GB of memory
and used memory is around 300-900 MB. This is caused by messages being stored in the
memory.

Router Memory

5.5:10%

. Total Allocated
4.9:10" "Held By Threads =1

4.4-10*

3.9-10%
3.3-10% |
2.8:10% |
2.2:10% |-

Used Memory [B]

1.7-10%

1.1-10*
5.5:10% -

0.0-109
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min|

Figure 6.3: The total allocated memory and memory-in-use by message router during the
test. The data was collected by the inspector every 5seconds.

52

Broker Memory

3.0-10°

9 Total Allocated
2.7-107 - : : Used 0

2.4-10°

2.1-10° F
1.810° |-
1.5:10° |-
1.2:10° |-

Used Memory [B]

9.0-10% |-
6.0-10%
3.0-108

0.0 100 s I s I s 1 N
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]|

Figure 6.4: The total memory allocation for the message broker service. One can see that
the broker allocates more memory compared to message router in the Figure 6.3.

Multipoint Topology

For the multipoint experiments we used topologies depicted in the Figures 6.1c and 6.1d.
The network throughput can naturally be influenced by other devices connected to the
topology. So the singlepoint topology was extended by another components by adding two
other routers around the original SUT. The versions of the additional SUTs are the same
as the original ones.

Throughput

80000

Router
72000 FBroker

64000 =
56000 =
48000 =

40000 =
32000 =

Message Rate [msg - s7]

24000 [it Al i A

16000 [
8000 [+

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]

Figure 6.5: Measured throughput of message router and message broker during the multi-
point case study. One can see the performance degradation of message router and improve-
ments of message broker on that Figure.

53

In the Figure 6.5 one can see, that adding routers to the broker node raises achiev-
able throughput to the 48,000 messages per second. On the other hand, the topology
consisting only of the routers shows significant performance degradation. The through-
put falls from the 90,000 messages per second to the approximately 23,000 messages per
second. This degradation is caused by the interior flow-control mechanism, which should
prevent the overload of the network. However, in this case study we can see that the per-
formance degradation is too high and the mechanism used in the Qpid-Dispatch should be
re-implemented.

Router Memory

6.5:10%
. Total Allocated
5.9:10% FHeld By Threads

5.2:10% |-
4.6-10* [f
3.9-10%
3.3-10% |
2.6-10* |-

Used Memory [B|

2.0-10% |-
1.3-10* |-
6.5:10% |-

1 s 1 s 1 s 1 s 1 s 1

0.0-109 . . .
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min|

Figure 6.6: Message router’s memory usage during the multipoint case study. Used memory
is higher than in the single-point.

Based on that mechanism, the memory usage of the middle router depicted in the Figure
6.6 is higher than during the previous case study. Memory used by all threads is around
two times higher and the mean value is around 43kB. On the other hand, the memory
allocated for the broker component remains the same as in the previous case study. The
memory monitoring for this case study is depicted in the Figure 6.7.

54

Broker Memory

3.0-10°

9 Total Allocated
2.7-107 - : Used 0

2.4-10°

2.1-10° F
1.810° |-
1.5:10° |-
1.2:10° |

Used Memory [B]

9.0-10% |
6.0-108 [
3.0-108

0.0-109 .
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]|

Figure 6.7: Memory usage for Broker remains almost the same as in the single-point case,
but with less spikes.

Conclusion

The collected data during the throughput measurements revealed unexpected and consid-
erable performance degradation in the serial connection of the message router. The com-
parison between the single and multi-point case study is in the Figure 6.8, which groups
together all throughput measurements data into one chart. Here one can see the perfor-
mance improvement between single instance Broker test and the test of topology with the
broker (yellow and green color), and performance degradation between router topologies
(red and blue color). The summary of results is also available in the Table 6.3.

Throughput [msg - s™!] Memory
Test Type Expected Measured Total Used max
Single Router - 90,000 45 kB 28 kB
Single Broker - 30,000 2GB 0.9GB
Line of Routers 90,000 23,000 49kB 43 kB
Line with Broker 30,000 48,000 2GB 0.9GB

Table 6.3: Table with collected data with highlighted performance improvements and degra-
dations.

55

Throughput

150000
. Router single
135000 |- Broker in line
120000 Broker single
= Full router line
7105000 - :
*
& 90000
£ 75000
~
g 60000
g
£ 45000
2
30000
15000
0 L 1 L 1 L 1 L 1 L 1 L 1 L 1
00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]

Figure 6.8: The comparison of all measured throughputs for different components and
topologies.

6.1.2 Latency

Latency is measured only by Maestro Receiver from certain load samples. Since the broker
is a distribution service, which needs to store messages for some time, or create and keep
queues for clients, it has higher requirements for system resources. On the other hand
message router has only one purpose —to route the messages. This makes it more faster
than the Broker. So high load can be unprofitable if one wants better latency during
the communication, especially in the case of topology with the broker. The broker can
handle less messages than router, but using router can raise broker’s throughput since it
can control the load. Thus it gives more time to broker to process messages even with
higher load. The test cases for latency measurements has slightly different settings than
throughput measurement. The settings for this measurements are shown in the Table 6.4.
Note, that RATE and TEST DURATION are sets for each of five connected clients, which
means that test is finished after sending 10,000,000 messages.

Singlepoint Multipoint
Test Property Router Broker Full Router With Broker
MESSAGE_SIZE [B] 256
PARALLEL__COUNT
TEST_DURATION ([msg] 2,000,000
RATE [msg -5 1] 15,000 4,600 3,600 7,600

Table 6.4: Test case settings for latency measurements.

56

Single Node

The latency measurements are done with 80% of maximum rate, which were discussed in
the Subsection 6.1.1. In the Figure 6.9 you can see the latency difference that we measured
between message router and message broker. In single node measurements, the router’s
latency is slightly higher in the most of the cases. After discussion we did not find a reason

why is router slower than Broker in that case.

Latency

| Latency Router 1

256 - Latency Broker 1

64

Latency [ms]
—
2N

0 0.1 0.2 0.3 0.4 0.5 0.6
Percentile

Figure 6.9: Latency chart showing the difference between the router and the broker latency

at 80 % of maximum rate.

Latency
| Latency Router 1
956 | Latency Broker
64
=7y o
£
o 16
O
g L
<
1 .
0.25 [
i i i i i i i i i i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentile

Figure 6.10: Latency chart showing the difference between the router and the broker latency
at same load. Router’s latency is significantly better then in previous case.

57

Then we tried to rerun the latency measurements with same load for both test cases.
The load was set to 4,500 messages per second for each connected client. The output is
depicted in the Figure 6.10, where the router is significantly faster, but still slower than
Broker. This is probably caused by some Maestro internal processes.

The memory used by message router is slightly lower and much stable than in the case
of maximum throughput as one can see in the Figure 6.11. This proves, that used memory
is dependent on the load. If the load on the router is higher then it needs more memory

for proper routing.

Router Memory

5.5-10%

. Total Allocated
4.9'10% "Held By Threads =1

4.4-10* |

3.9-10%
3.3-10
2.8-10
2.2-10*

Used Memory [B|

1.7-10%
1.1-10%
5.5:10° |

0.0-109 .
00:00 00:20

00:40

01:00 01:20 01:40 02:00

Relative Time [min|

Figure 6.11: Memory usage of message router is much stable when the router is not under
the maximum load. The spikes are caused by some unexpected events in the topology.

Broker Memory

3.0-10°
2.7:10° -
2.4-10°

Total Allocated
Used 0

2.1-10° F
1.810° |-
1.5:10° |-
1.2:10° |-

Used Memory [B]|

9.0-108
6.0-108

3.0-108
1

0.0-10° e
00:00 01:00

02:00

03:00 04:00 05:00 06:00 07:00

Relative Time [min]|

Figure 6.12: The Broker’s memory usage has less spikes when the load is only about of

80 % of maximum.

58

In the Figure 6.12 one can see the Inspector output for Broker’s used memory. The
used memory here is much stable than in the previous cases, which is caused, as in the
router case, by lower load on the Broker. Maximum used memory stags the same as in the

previous cases.

Multipoint Topology

One can see the measured latency on multinode topology of three routers, and two routers
with middle-broker in the Figure 6.13. The latency curve proves, that routers are able to
deliver messages into its destination faster than the topology with the Broker, again because
the Broker needs to store them in the memory. The latency of the topology with broker
reaches around 16 ms in 90 % of samples; on the other hand, topology consisting of routers
has significantly better latency that is around 1ms in 90 % of samples. The conclusion is
that the collected data proves the router should be much faster than the broker during the

certain circumstances..

Latency

| Latency Router [

256 - Latency Broker

64

Latency [ms]
=
2N
T

0.25 =

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.13: Latency comparison between topologies with only routers and with the middle-
broker. The router network is here significantly faster.

59

Router Memory

6.5:10%

1 Total Allocated
5.9:10" "Held By Threads =1

5.2:10%

4.6:10% T
3.9-104 H

3.3-104
2.6:104

Used Memory [B]

2.0-10%
1.3-10* |-

6.5:10% -

0.0-100 b——n
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00

Relative Time [min]|

Figure 6.14: Memory usage shows, that memory usage of the router is affected by the
throughput.

Collected data about the memory usage proves the previous statements. In the Figure
6.14 we show used memory by message router. The curve is very stable and the values
moves around the 9 MB of used memory. The used memory by the Broker is shown in the
Figure 6.15 and is very similar as in the previous measurements.

Broker Memory

3.0-10°
0 Total Allocated
2.7-107 |- : : Used 0

2.4-10°

2.1-10° |7
1.810° |-
1.5:10° |-
1.2:10° |-

Used Memory [B]|

9.0-108
6.0-108
3.0-108

0.0-10° s
00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00

Relative Time [min]|

Figure 6.15: Chart of memory allocation on the Broker node.

Conclusion

During the latency measurements we collected and compared data for the message router
and message broker topologies. The summary of latency measurements is available in the
Table 6.5. Is it was already mentioned, message router is faster in the model environment

the message broker.
60

Latency [ms] Memory
Test Type 90 % 99 % | Total | Used max | Duration [s]
Single Router 2.263 12.495 38 kB 28 kB 136
Single Broker 0.386 181.759 2 GB 0.9 GB 425
Line of Routers 1.292 50.815 46 kB 8 kB 540
Line with Broker 15.487 1031.167 2 GB 0.9 GB 250

Table 6.5: The summary table with collected latency data with highlighted performance
improvements and degradations.

6.2 Behavior Measurements

Moreover, we present some results collected during the behavioral testing using the Maestro
Agent extension. The topologies used in the following scenarios are depicted in the Figure
6.16. The topology depicted in the Figure 6.16a is used to demonstrate Agent functions and
message loss during the crash. The other topology depicted in the Figure 6.16b represent
a basic line link with redundant router 3 which is configured as a slave and root router 2
which is configured as a master. Here we demonstrate the recovery time of Qpid-Dispatch.

1

Maestro
Inspector

!

Maestro
Inspector

A s @
Router 1 P Router 2 P Router 3
\ / Router 4

Maestro
Receiver

Maestro
Sender

Maestro
Receiver

Maestro
Sender

(Maestro \‘4
Agent “

(Maestro \ >
Agent \‘

(a) Line topology with connected Inspector and

Agent (b) Topology with redundant router.

Figure 6.16: Examples of experimental topologies created for behavioral performance test-
ing and experiments with Maestro. The arrows indicate the communication path between
topology components and the numbers represent the cost of the path.

On each topology four tests were executed with different actions performed by the Agent.
The test properties remains the same as during the latency testing for router line topology
with the difference in test duration, which was set to 1,500,000 messages per connected
client. The following actions, with additional parameter such as duration, were performed
during the test:

e Restart —simple router restart.

61

e Shutdown —simple shutdown and restart for different time duration.

6.2.1 Agent Demonstration

The agent performed specific action in the third minute of the test scenario (there can be
a small delay caused by the repository download on the Agent). The shutdown actions
have specific duration, which was set to 10, 60 and 120 seconds. Since the topology used
for this type of tests does not have any redundant path to destination or Broker work
message store, the messages got lost during the actions. Note, that the test was triggered
without message acknowledgment settings for the router and the clients. In the Figure
6.17 one can see the throughput affected by the restart and shutdown actions in every case
study. The magnitude of the action impact is based on the action duration, hence, the
longer shutdown will lose more message than short restart. However, the chart proves, that
routers can establish lost connection with the clients without problems when the router
is started again. The different test duration points to the fact, that Maestro detected
connections issues and wait for the connection to be established.

Throughput
40000
Router restart
35000 + Router 10 sec shutdown
Router 60 sec shutdown
=~ 30000 | Router 120 sec shutdown =
wm
%“ 25000 -
o ‘
% 20000 - r\
~
%ﬁ 15000 |- ~ ' |
8
= 10000 [
5000 -
0 | IS NN SR T NN T SO AN TR SO ST T NS T | Il Il Il {0 RS R ST TR T A T T NS T |

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 07:00 07:30

Relative Time [min|

Figure 6.17: Maestro Agent demonstration against a simple topology with restart and
shutdown in the third minute of test.

The latency is affected as well, one can see that significant message amount raises the
latency from 1ms to 64 ms. However note, that some messages were lost which leads to
smaller number of samples for latency computation. The message loss ratio is captured in
the Table 6.6. One can see that message router lost 39,518 messages which corresponds to
throughput for 2,195 ms. Regarding this, we can say that router restart interrupts the link
for 2,195,mss.

62

Latency

| Router 120 sec shutdown =1
256 F Router 60 sec shutdown]
Router 10 sec shutdown
Router restart
64 EELIILLIIES s
T -
A
o 16 I
O
=]
5}
1F]
0.25 |-]
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.18: Latency diagram affected by the actions simulating the connection issues.

Action Duration [s] | Expected [msg] | Lost [msg] | Percent
Restart 0 39,518 0.53 %
10 220,445 2.94 %

7,500,000
Shutdown 60 871,661 11,62 %
120 918,266 | 12,25 %

Table 6.6: Table with summary of lost messages during the specific actions on the middle

router node.

6.2.2 Measurement With Redundant Router

During this experiment the Agent perform the same actions as in the previous test cases.
The difference is, that given topology now has a slave router connected into the network
which is ready to route the messages when master router crashes. In the Figure 6.19 the
throughput is depicted for all tests on this topology. The Agent performs actions in third
minute which causes spike under the stable load curve, but the throughput has risen back
quickly. This spike is caused by a small delay when the redundant router starts his job. It
needs some time for warm-up, which involves the memory allocation depicted in the Figure
6.20. As one can see, there is no additional spikes after then master is turned on, hence the
first spike is causes only by first routing redundant router.

63

Throughput

40000
Router restart
35000 + Router 10 sec shutdown
Router 60 sec shutdown
30000 |- Router 120 sec shutdown

25000 -

20000 -

15000 -

Message Rate [msg - s71]

10000 -

5000 -

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 07:00

Relative Time [min]

Figure 6.19: Throughput comparison between the test cases with different Agent executions.
The spike is caused by warm-up period of redundant router.

Memory

65000

Total Allocated
58500 ["Held By Threads =1

52000 -
45500 [~
39000 [~
32500 [~
26000 -

Used Memory [B]

19500
13000 -

6500 -

O..I..I..I..I..I..I..I..I..I..I..I..I..I..

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30

Relative Time [min]

Figure 6.20: Allocated memory for redundant router during the restart. One can see that
router allocated new memory when the master router crashed and the slave had to handle
the load. This memory is allocated until the tear down.

64

Latency

| Router 120 sec shutdown =
256 F Router 60 sec shutdown =20]
Router 10 sec shutdown

Router restart 1)

64 -

Latency [ms|
=
D
T

A P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Percentile

Figure 6.21: Latency diagram of redundant router topology where the Agent perform dif-
ferent actions. The latency remains the same for all the test cases which points to a good
routing between the routers.

Since we want to know how long it takes router to re-establish connections after the
crash we can find the answer in the Figure 6.22. One can see the detail of test case with
restart router action which is executed three minutes after the test starts. The monitored
router is the redundant one, so we can see that it handled the load for two seconds which is
time needed for restart. After this time the master router was able to route load again and
the slave router just awaits for another communication. This statement is also supported
by results collected and discuss in the Section 6.2.1.

Unsettled Messages

100
90
80

Unsettled Messages W

70
60 -
50 -
40 -
30 -
20

Amount of Unsettled Messages

10
0 i i i i
02:58 02:59 03:00 03:01 03:02 03:03 03:04 03:05 03:06 03:07 03:08

Relative Time [minutes|

Figure 6.22: Chart captures unsettled messages on the redundant router node. The slave
router handled load for two seconds.

65

The conclusion is, that Qpid-Dispatch is able to recover after a crash in less than three
seconds, when there is no block for service start. When the router is down, the topology
is updated and the previous hop does not have path to the crashed router, so the clients
cannot affect the router start after the crash. However, even with redundant path there is
a chance that some messages are lost as it is captured in the Table 6.7. To avoid this case
it is necessary to turn on acknowledge mechanism for AMQP messages, which should avoid
message loss but it will affect the performance.

Action Duration [s] | Expected [msg] | Lost [msg] | Percent
Restart 0 21,804 0.29 %
10 13,359 0.18 %

7,500,000
Shutdown 60 16,205 0.22 %
120 22,042 0.29 %

Table 6.7: Table with summary of lost messages during the specific action was performed
on the middle router node without redundant path.

66

7 Future works and ideas

The Maestro is currently used for performance testing of Apache ActiveMQ Artemis and
Qpid-Dispatch in Red Hat Messaging QE team. This makes the Maestro one of the key
utilities for the Messaging and the primary performance tool. But since the Maestro is
basically immature system, there is still a lot of places for improvements. We present several
ideas in the following. Note, that Maestro-Agent and AMQP Inspector are new Maestro
modules, which makes performance testing of Qpid-Dispatch with collecting interior data
about SUT itself available. These extensions were already merged in the upstream and are
available since Maestro stable version 1.3.0.

7.1 Regression Testing

Since both message broker and message router have new builds every few weeks, there can
occur a performance degradation. This issue can be caused by just one simple commit,
which can fix some issues but break performance. However, Maestro can catch such perfor-
mance degradation early in the process, if there is already previously measured data with
specific informations (so called baselines). Maestro can then re-run the same test with new
version of SUT and compare the collected results with previous the data set.

This mechanism is simple to achieve. The first step is to configure the pipeline job on
the orchestration and integration system such as Jenkins or Travis CI. This job has to have
access to SUT repository and baseline data tagged as a performance standard for the SUT.
The trigger of this pipeline can be every push or every commit with specific tag. The other
step is the extension of the Maestro-Reporter, where it can compare older data with newly
collected ones and report, how much they differ and where. This pipeline job then can alert
engineers, that some specific commit caused performance degradation and also show the
difference between actual collected data and estimate collected data.

This type of testing can also be applicable to all test cases with different SUT configu-
ration. The Maestro would be able to compare expected data with collected data and tell
us that this specific configuration has a performance degradation.

7.2 Data Reporting

The current reports, created by Maestro itself, contain charts, in the png format generated
by the Java library for creating bitmap figures. This makes them less informative that
they could be with better data visualization. Since Inspectors collect additional data about
SUT, e.g. memory usage, it will be helpful for engineers of SUT to see interactive charts
with collected data. With this options, engineers can better analyze what is going on with
SUT during the test scenario.

67

A good example of interactive and vector charts library is Grafana'. Grafana can

produce awesome outputs from collected data e.g. from the database. Another example is
Project Jupyter?, which can plot interactive charts from database source data on the fly.
One only needs installed Python on the node. Jupyter starts a Python server on the node
and makes plotted data available via the HT'TP browser. Maestro can implement such
strategy, as a new peer similar to the data server code, which is running on all Maestro
peer nodes. The difference is, that this report server will be started by Maestro-Reporter
on the execution node.

7.3 Collected Data Compression

Each Maestro peer collects different data during the test. Size of these data is based on peer
type, collected data format and test duration. For example the Maestro-Receiver collects
huge amount of time for throughput and latency chart. These data are represented as a
double-column csv file with columns eta(estimated time of arrival) and ata(actual time of
arrival). Each csv file looks like the following:

eta;ata
"2017-10-19 13:19:32.661300","2017-10-19 13:19:32.706649"
"2017-10-19 13:19:32.661500","2017-10-19 13:19:32.706823"

Imagine, that this record is written for each send/received message on sender or receiver.
For example we can have 50,000 records with prefix ,2017-10-19 13:19:32" which rep-
resents a huge redundancy. The idea of compression is to save only first timestamp and
then compute difference between saved timestamp and current timestamp and write this
difference into csv file. This way would be able to save at least 15 B per timestamp, which
saves more than one half of current size. The only necessary thing is to write a new times-
tamp after some time, when difference is too big. The new csv file would then look like the
following:

eta;ata
1525285541559,+18787
+30,+40
+35,+42

7.4 Multi-point Senders and Receiver

Behavioral testing introduces an idea of multipoint senders and receivers. Lets say, that we
want to collect behavioral data about Qpid-Dispatch with two queues, where the first queue
accepts messages from two senders and the second queue accepts messages from five senders.
This situation better simulates the real network traffic than the current mechanism. To
achieve this, the Maestro needs to extend Maestro-Worker with option for multiple endpoint
connections dynamically. The current version offers only one specific connection specified
by the user.

! Grafana— open source software for time series analytics https://grafana.com/
2 Jupyter —http://jupyter.org/

68

https://grafana.com/
http://jupyter.org/

7.5 Maestro-Agent Executor Improvements

The Maestro-Agent is able to download external git repositories and tries to process them
during the test. However, the external code handler is currently designed only for code
written in Groovy. This limitation can be easily removed by creating more general executor,
which would be able to execute any type of scripts. One idea how to achieve this is to create
more complex executor in Kotlin languange®. The new executor should be able to run each
type of downloaded script and keep the access to the return code and standard output. This
extension would remove the limitation to use, which has to specify each external action
handler in the Groovy language. Note, that new executor should not affect performance
testing during the execution, so the operations should remain atomic.

7.6 Multiple Agents and Inspectors

Version of Maestro 1.3.0 has already integrated Maestro Agent and AMQP Inspector. How-
ever, the front-end API does not allows setting for multiple Agents or Inspectors during
one test scenario. Hence, only one Agent and one Inspector can be specified by Groovy
test script. The solution for this problem must involve dynamic scan of specific environ-
ment variables which will contains setting for the Maestro components. The settings can
be loaded into the array of Agent/Inspector setting and then can be assigned to a specific
component by the node URL.

3Kotlin—https://kotlinlang.org/

69

https://kotlinlang.org/

8 Conclusion

In this work we described the fundamentals of the performance testing, common perfor-
mance metrics and bugs, and selected related tools. Further, we introduced the architecture
and functionality of Messaging Performance Tool (MPT) called Maestro. The main part of
this work focused on the proposal and implementation of extensions for Maestro, in partic-
ular new components: Maestro Agent and AMQP Inspector. The implementation of these
components was necessary to enable proper performance testing of Qpid-Dispatch router.
Moreover, we designed and implemented the Topology Generator tool, which is going to be
used for semi-automatic topology configuration generation, which will significantly simplify
the testing phase.

The design was changed multiple times during this work to match with the needs of
the performance testing of Qpid-Dispatch but also of the Maestro itself. For example the
Maestro Agent was initially designed as a component which would control the router, but
after some discussions and ongoing implementation we instead decided to create Maestro
Agent as an independent code handler on the SUT node. This allows not only router control,
but also control of any other software on the node easily by external Groovy scripts available
in any public git repository.

Furthermore AMQP Inspector was added to the design after the Agent has been de-
veloped when we realized that it is more efficient to create a new component for router
inspection. It is possible to use Maestro Agent and parse the string output of external tool
which can inspect the router, but it is not comfortable to send the long output through the
Maestro Broker and then parse it. The result was the AMQP Inspector as a new compo-
nent, which only needs path to the router and then is able to collect and parse data about
the SUT.

All implemented extensions were experimentally evaluated on series of basic and be-
havioral test cases. We performed the collection of performance data of several topologies
generated by Topology Generator. While we decided to pick small topologies they still can
offer interesting results about the performance of Qpid-Dispatch and we compared these re-
sults with Apache ActiveMQ Artemis component. The experimental evaluation has shown
some interesting data and has discovered several performance degradations.

The code of the work is published as an open-source repository and is available on
GitHub. All developed extensions were already merged into the upstream version of Maestro
and will be available since the version 1.3.0, which is already used for performance testing
of MOM by Red Hat company. The preliminary results of this work were published and
presented in the paper for Excel @QFIT! conference.

!Excel@FIT —IT conference for students and theirs work http://excel.fit.vutbr.cz/

70

http://excel.fit.vutbr.cz/

Bibliography

1]

2]

Docker. Online. [visited 2018-03-11].
Retrieved from: https://docs.docker.com/engine/docker-overview/

ISTQB Foundation Level and Agile Tester Certification guide. Online. [visited
2017-11-29].
Retrieved from: http://istgbexamcertification.com/

Network Automation with Ansible. Online. [visited 2018-03-11].
Retrieved from: https://www.ansible.com/overview/networking

Regression Testing. Online. [visited 2017-11-15].
Retrieved from:
http://softwaretestingfundamentals.com/regression-testing/

Software Testing Dictionary. Online. [visited 2017-11-15].
Retrieved from: https://www.tutorialspoint.com/software_testing_dictionary

Anukool Lakhina, C. D., Mark Crovella: Diagnosing Network-Wide Traffic
Anomalies. Online. [visited 2017-11-13].

Retrieved from: http://www.cs.bu.edu/fac/crovella/paper-archive/sigc04-
network-wide-anomalies.pdf

Bhatt, N.: Performance Testing — Response vs. Latency vs. Throughput vs. Load vs.
Scalability vs. Stress vs. Robustness. Online. [visited 2017-11-05].

Retrieved from: https://nirajrules.wordpress.com/2009/09/17/measuring-
performance-response-vs-latency-vs—throughput-vs-load-vs-scalability-
vs-stress-vs-robustness/

Broadwell, P. M.: Response Time as a Performability Metric for Online Services.
Online. [visited 2017-11-19].
Retrieved from: http://roc.cs.berkeley.edu/papers/csd-04-1324.pdf

Buch, D.: 4 types of load testing and when each should be used. Online. [visited
2017-11-05].

Retrieved from: https://www.radview.com/blog/4-types-of-load-testing-and-
when-each-should-be-used

Corporation, S. P. E.: SpecJMS. Online. [visited 2018-01-03].
Retrieved from: https://www.spec.org/jms2007/

Curry, E.: Message-Oriented Middleware. Online. [visited 2017-12-21].
Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.418.173&rep=repl&type=pdf

71

https://docs.docker.com/engine/docker-overview/
http://istqbexamcertification.com/
https://www.ansible.com/overview/networking
http://softwaretestingfundamentals.com/regression-testing/
https://www.tutorialspoint.com/software_testing_dictionary
http://www.cs.bu.edu/fac/crovella/paper-archive/sigc04-network-wide-anomalies.pdf
http://www.cs.bu.edu/fac/crovella/paper-archive/sigc04-network-wide-anomalies.pdf
https://nirajrules.wordpress.com/2009/09/17/measuring-performance-response-vs-latency-vs-throughput-vs-load-vs-scalability-vs-stress-vs-robustness/
https://nirajrules.wordpress.com/2009/09/17/measuring-performance-response-vs-latency-vs-throughput-vs-load-vs-scalability-vs-stress-vs-robustness/
https://nirajrules.wordpress.com/2009/09/17/measuring-performance-response-vs-latency-vs-throughput-vs-load-vs-scalability-vs-stress-vs-robustness/
http://roc.cs.berkeley.edu/papers/csd-04-1324.pdf
https://www.radview.com/blog/4-types-of-load-testing-and-when-each-should-be-used
https://www.radview.com/blog/4-types-of-load-testing-and-when-each-should-be-used
https://www.spec.org/jms2007/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.173&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.418.173&rep=rep1&type=pdf

[12]

[13]

[14]

18]

[19]

[20]

[21]

[22]

[23]

Din, G.: A Performance Test Design Method and its Implementation Patterns for
Multi-Services Systems. PhD. Thesis. Technical University of Berlin. Berlin,
Germany. 2008.

Fulay, A.: Containers Deep Dive — LXC vs Docker. Online. [visited 2018-05-16].
Retrieved from: https:
//robinsystems.com/blog/containers-deep-dive-1lxc-vs-docker-comparison

Gao, J.; Ravi, C. S.; Raquel, E.: Measuring Component-Based Systems Using a
Systematic Approach and Environment. Online. [visited 2017-10-26].

Retrieved from: https:
//subs.emis.de/LNI/Proceedings/Proceedings58/GI.Proceedings.58-6.pdf

Kopp, M.: Why Averages Suck and Percentiles are Great. Online. [visited 2017-11-20].
Retrieved from: https:
//www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/

Manzor, S.: Application Performance Testing Basics. Online. [visited 2017-10-26].
Retrieved from: http://www.agileload.com/docs/default-document-library/
application-performance-testing-basics-agileload.pdf

Marko Aho, C. V.: Computer System Performance Analysis and Benchmarking.
Online. [visited 2017-11-15].

Retrieved from:
http://www.cs.inf.ethz.ch/37-235/studentprojects/vinckier_aho.pdf

Martina, K.: Unified Reporting for Performance Testing. Master’s Thesis. Brno
University of Technology, Faculty of Information Technology. Brno. 2017.

Molyneaux, I.: The Art of Application Performance Testing: Help for Programmers
and Quality Assurance. O’Reilly Media, Inc.. first edition. 2009. ISBN 0596520662,
9780596520663.

OASIS: Advanced Message Queuing Protocol (AMQP) Version 1.0. 2012.

Piske, O. R.: Messaging Performance Tool. [Online; visited 2017-10-15].
Retrieved from: http://orpiske.github.io/msg-perf-tool

Red Hat, Inc.. Raleigh, North Carolina, U.S.: Red Hat JBoss AMQ 7.0 Using AMQ
Broker. 2017. available at
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/
using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf.

Red Hat, Inc.. Raleigh, North Carolina, U.S.: Red Hat JBoss AMQ 7.0 Using AMQ
Interconnect. 2017. available at https://access.redhat.com/documentation/en-
us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-
7.0-Using_AMQ_Interconnect-en-US.pdf.

Sharma, D.: Why and How: Performance Test. Online. [visited 2017-10-26].
Retrieved from: http:
//www.qaiconferences.org/tempQAAC/Why%20&%20How-Performance’20Test.pdf

72

https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison
https://robinsystems.com/blog/containers-deep-dive-lxc-vs-docker-comparison
https://subs.emis.de/LNI/Proceedings/Proceedings58/GI.Proceedings.58-6.pdf
https://subs.emis.de/LNI/Proceedings/Proceedings58/GI.Proceedings.58-6.pdf
https://www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/
https://www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/
http://www.agileload.com/docs/default-document-library/application-performance-testing-basics-agileload.pdf
http://www.agileload.com/docs/default-document-library/application-performance-testing-basics-agileload.pdf
http://www.cs.inf.ethz.ch/37-235/studentprojects/vinckier_aho.pdf
http://orpiske.github.io/msg-perf-tool
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_broker/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Broker-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
https://access.redhat.com/documentation/en-us/red_hat_jboss_amq/7.0/pdf/using_amq_interconnect/Red_Hat_JBoss_AMQ-7.0-Using_AMQ_Interconnect-en-US.pdf
http://www.qaiconferences.org/tempQAAC/Why%20&%20How-Performance%20Test.pdf
http://www.qaiconferences.org/tempQAAC/Why%20&%20How-Performance%20Test.pdf

List of Figures

2.1

2.2

2.3
24
2.5
2.6

2.7
2.8

2.9

3.1

4.1

4.2

4.3

4.4

4.6
4.5

The performance testing process with the four most important parts and
theirs individual steps based on [24]. oL
The graph shows amount of concurrent sessions depending on time. During
to network traffic monitoring we can see the traffic spike occurring after five
hours from test start.o
The response time of the system during the load testing depended on requests
persecond.l oL e e e e
Stress testing diagram capturing dependency of response time on amount of
TEQUESES. . . . o L e e e e e
Soak testing with memory usage dependent on time.
Load phases of performance measurement process.
Diagram capturing the difference between the latency and response time.

Transactions response time with calculated average and median of response
time. The average represent inaccurate response time, which is higher than
real one.
Transactions response time with calculated average and median of response

The architecture of the Maestro. The Maestro contains Maestro Clients as
a front-end; Maestro Broker as a message distributor; and sender, receiver
and inspectors as a backend. The arrows represent communications between
the Maestro components and with the SUT. The line value represents the
number of connections where default is 1.

Example of Ansible architecture with several nodes. Inventory and Playbook
are passed to Ansible Management node, which executes the playbook on all
node specified in the inventory. Lo oL
Docker architecture with all its components and commands. Docker can pull
or build specific image and then run it in docker container.
Topology generator takes input YAML configuration containing specification
of graph metadata and outputs sets of variables in JSON format.
The scheme of configuration files deployment to the nodes The Ansible script
takes input file with variables generated by Topology Generator, fills the
configurations template and deploy them to corresponding nodes.
A simple network with active router agent.
The architecture of updated Maestro for testing of the Qpid-Dispatch router.
The arrows represent communications between the Maestro components and
with the SUT. The line value represents the number of connections where
default is 1. The C front-end is no longer need for this version.

73

10
12
13
15
16
17

17

20

27

28

32

33
34

5.1

5.2

5.3

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15
6.16

6.17

Communication scheme inside the Maestro with the agent. Scheme shows
the agent git repository download and then handling the proper note defined
by the user. The Figure also shown the SUT communication with the AMQP
Inspector. oL 46
The inner mechanism of Maestro Inspector during the receive start inspector
note. One can see the note exchange and choose of specific inspector class

based on the note’s payload.o 47
The whole Inspector process including message creation, message sending,
collecting and parse. L 48

Examples of experimental topologies created for basic performance testing
and experiments with Maestro. oo oo 50
Chart of the maximum throughput of router and broker during the single-
point test case. One can see the significant difference between those two

COMPONENtS. . .« .« o L Lo e e e e e e e e e e 52
The total allocated memory and memory-in-use by message router during
the test. The data was collected by the inspector every 5seconds. 52

The total memory allocation for the message broker service. One can see
that the broker allocates more memory compared to message router in the
Figure 6.3. L 53
Measured throughput of message router and message broker during the mul-
tipoint case study. Omne can see the performance degradation of message

router and improvements of message broker on that Figure. 53
Message router’s memory usage during the multipoint case study. Used
memory is higher than in the single-point. 54
Memory usage for Broker remains almost the same as in the single-point
case, but with less spikes. o o L 55
The comparison of all measured throughputs for different components and
topologies. 56
Latency chart showing the difference between the router and the broker la-
tency at 80 % of maximum rate. 57

Latency chart showing the difference between the router and the broker la-
tency at same load. Router’s latency is significantly better then in previous
CASE. « v v v e e e e e e e e e e e 57
Memory usage of message router is much stable when the router is not under
the maximum load. The spikes are caused by some unexpected events in the

topology. L 58
The Broker’s memory usage has less spikes when the load is only about of

80% of maximum. e 58
Latency comparison between topologies with only routers and with the middle-
broker. The router network is here significantly faster. 59
Memory usage shows, that memory usage of the router is affected by the
throughput. o 60
Chart of memory allocation on the Broker node. 60
Examples of experimental topologies created for behavioral performance test-

ing and experiments with Maestro. oo 61
Maestro Agent demonstration against a simple topology with restart and
shutdown in the third minute of test. 62

74

6.18
6.19

6.20

6.21

6.22

E1

E.2

E.3

EA4

E.5

Latency diagram affected by the actions simulating the connection issues.

Throughput comparison between the test cases with different Agent execu-
tions. The spike is caused by warm-up period of redundant router.
Allocated memory for redundant router during the restart. One can see that
router allocated new memory when the master router crashed and the slave
had to handle the load. This memory is allocated until the tear down. . . .
Latency diagram of redundant router topology where the Agent perform
different actions. The latency remains the same for all the test cases which
points to a good routing between the routers.
Chart captures unsettled messages on the redundant router node. The slave
router handled load for two seconds.

Examples of experimental topologies created for basic performance testing
and experiments with Maestro.
Examples of experimental topologies created for basic performance testing
and experiments with Maestro.,
Collected data about the memory allocation for the redundant router node
during the Agent actions execution.
Collected data about the unsettled messages for the redundant router node
during the Agent actions execution.
Collected data about the delivered messages for the redundant router node
during the Agent actions execution.

75

63

64

65

List of Tables

3.1

6.1
6.2
6.3

6.4
6.5

6.6

6.7

The summary of Maestro metrics summary collected during test cases. . . .

Machines and their properties, which were used for the experimental evaluation.

Test case settings for throughput measurements.
Table with collected data with highlighted performance improvements and
degradations.
Test case settings for latency measurements.
The summary table with collected latency data with highlighted performance
improvements and degradations. L oo
Table with summary of lost messages during the specific actions on the mid-
dle router node. L. e e
Table with summary of lost messages during the specific action was per-
formed on the middle router node without redundant path.

76

23

49
o1

55
56

61

63

List of Abbreviations

AMQP
API
ATA
CI
CPU
CRUD
CcSV
ETA
HDR
HTTP
HW
IBM
IDE
IP
IS-IS
ISO
OSI
IS
JMS
JMX
JSON
JVM
KPI
MOM
MPT

Advanced Message Queuing Protocol
Application Program Interface
Actual Time of Arrival

Central Intelligence

Central Processing Unit

Create Read Update Delete
Comma-separated Values

Estimated Time of Arrival
High-Dynamic-Range

Hyper Text Transfer Protocol
Hardware

International Business Machines
Integrated Development Environment
Internet Protocol

Intermediate System to Intermediate System
International Organization for Standardization
Open Systems Interconnection model
Information System

Java Message Service

Java Management Extensions
JavaScript Object Notation

Java Virtual Machine

Key Performance Indicators
Message-Oriented Middleware

Messaging Performance Tool

77

MQTT
MQ
OSPF
PC

PNG

QE
RAM
REST
RTT
SASL
SSH
SSL/TLS
STOMP
SUT
URL
W3C
XML
YAML

Message Queuing Telemetry Transport
Message Queue

Open Shortest Path First

Professional Computer

Portable Network Graphics

Quality Engineering

Random Access Memory

Representational State Transfer

Round Trip Time

Simple Authentication and Security Layer
Secure Shell

Secure Sockets Layer/Transport Layer Security
Streaming Text Oriented Messaging Protocol
System Under Test

Uniform Resource Locator

World Wide Web Consortium

Extensible Markup Language

Yet Another Markup Language

78

List of Appendices

A CD Content

B The Maestro Protocol

C Topology Generator

D AMQP Inspector Data Sets

E Experimental Evaluation Additional Data

79

80

81

85

88

90

A CD Content

e /maestro-java/* —source code of Maestro from date May 22, 2018

e /iga-topology-generator/* —source code of Topology Generator from date May
22,2018

e /doc/* —Maestro documentation
e /readme.txt —readme with useful informations about Maestro build and start
o /text/* —source code of this thesis from date May 22, 2018

e /xstejs24-performance.pdf —final version of this thesis from date May 22, 2018

80

B The Maestro Protocol

The following commands were updated according the Maestro 1.3.0 version':

Requests Notes

MAESTRO_NOTE_START_RECEIVER —note to the receiver, that it should
start receiving data.

e Value: 0
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_STOP_RECEIVER —note to the receiver, that it should stop
receiving data.

e Value: 1
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO _NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_START_SENDER —note to the sender, that it should start
sending data.

e Value: 2
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_STOP_SENDER —note to the sender, that it should stop
sending data.

e Value: 3
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_START_ INSPECTOR —note to the inspector, that it should
start inspecting the SUT.

! Original commands description for MPT is available at https://github.com/orpiske/msg-perf-tool/
tree/master/doc/maestro/protocol

81

https://github.com/orpiske/msg-perf-tool/tree/master/doc/maestro/protocol
https://github.com/orpiske/msg-perf-tool/tree/master/doc/maestro/protocol

e Value: 4
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_STOP_INSPECTOR —note to the inspector, that it should
stop inspecting the SUT.

e Value: 5
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO _NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__FLUSH —note to the any node to request it to flush test data
to disk.

e Value: 6
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_SET —note to the any node to set the testing properties.

e Value: 7

e Payload: the test parameters such as TEST DURATION, PARALLEL_COUNT,
MESSAGE_SIZE, RATE, etc.

e Response: the peers respond to this note by sending a MAESTRO_NOTE_OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__STATS —note to the any node to request the current perfor-
mance statistics.

e Value: 8
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO _NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ ERROR

MAESTRO_NOTE__HALT —note to the any node to request them to stop and exit
cleanly.

e Value: 9
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__PING —note to the any node to verify which peers are alive in
the cluster.

e Value: 10

e Payload: seconds or microseconds.

82

e Response: the peers respond to this note by sending a MAESTRO_NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__GET —note to the peers to get informations about the test.

e Value: 17
e Payload: None
e Response:

MAESTRO_NOTE_START__AGENT —note to the agent, that it should start ex-
ecuting external handlers.

e Value: 18
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE__ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE_STOP__ AGENT —note to the agent, that it should stop exe-
cuting external handlers.

e Value: 19
e Payload: None

e Response: the peers respond to this note by sending a MAESTRO_NOTE__ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__AGENT__SOURCE —note to the agent, that it should down-
load external source defined in the payload.

e Value: 21
e Payload: URL for external git repository which the Agent will download.

e Response: the peers respond to this note by sending a MAESTRO _NOTE__ OK
or MAESTRO_NOTE_INTERNAL_ERROR

MAESTRO_NOTE__USER_ COMMAND_ 1—note to the agent, that it should
execute command specified in the payload. The command should be present in ex-
ternal git repository downloaded by MAESTRO_NOTE__AGENT__SOURCE.

e Value: 30
e Payload: Command which will be executed in string format.

e Response: the peers respond to this note by sending a MAESTRO _NOTE_ OK
or MAESTRO_NOTE_INTERNAL_ERROR

Response Notes

MAESTRO_NOTE_ STATS —is sent by a node as a response toa MAESTRO__NOTE_ STATS
request.

e Value: 8
e Payload: yes

83

MAESTRO_ NOTE_ PING —is sent by the peers as a response toa MAESTRO_NOTE_ PING
request.

e Value: 10
e Payload: yes

MAESTRO_NOTE__OK —is a generic response when the node complies with a re-
quest.

e Value: 11
e Payload: None

MAESTRO_NOTE__PROTOCOL_ERROR —is issued by any node whenever the

protocol is malformed.

e Value: 12
e Payload: None

MAESTRO_NOTE_INTERNAL_ ERROR —is issued by any node when it is un-
able to comply with a request.

e Value: 13
e Payload: None

MAESTRO_NOTE_ABNORMAL_DISCONNECT —is issued by any node as a
last-will message.

e Value: 14
e Payload: None

Notify Notes

MAESTRO_NOTE__NOTIFY_ FAIL—is issued by any node when the test failed.

e Value: 15
e Payload: yes

MAESTRO_NOTE__NOTIFY_ SUCCESS —is issued by any node when the test
completed successfully.

e Value: 16
e Payload: yes

84

C Topology (enerator

Inventory

The following is an example of Inventory file used as an input for Topology Generator and
Ansible deployment scripts. The inventory lists all the nodes and their role in the topology.

[clients]
sender ansible_host=10.0.0.1
receiver ansible_host=10.0.0.2

[routers]

routerl ansible_host=10.0.0.3
router2 ansible_host=10.0.0.4
[brokers]

brokerl ansible_host=10.0.0.5

[nodes:children]
brokers
clients
routers

Graph Metadata

The example of graph metadata file for Topology Generator is as follows. For this case Gen-
erator will generate graph with two routers and three brokers, where routers are connected
together and each broker is connected to one router.

directed: false
graph: {}
nodes:
- type: router %node type
id: routerl %node name
- type: router
id: router2
- type: broker
id: brokerl
- type: broker

85

1

id: broker2

inks:

source: router2 %source node for link
target: routerl %target node for link
source: router?2

target: broker2

source: routerl

target: brokerl

multigraph: false

Topology Generator Output

The example of Topology Generator output in YAML format.

directly connected routers.

C

onfs:

machine: routeril

router:

- id: routeril
mode: standalone

listener:

- host: 0.0.0.0
role: inter-router
port: 6000

- host: 0.0.0.0
authenticatePeer: ’no’
role: normal
port: 5000
saslMechanisms: ANONYMOUS

connector:

- host: router2
role: inter-router
port: 6001

address:

- prefix: closest
distribution: closest

- prefix: multicast
distribution: multicast

- prefix: unicast
distribution: closest

machine: router2

router:

- id: router2
mode: standalone

listener:

- host: 0.0.0.0

role: inter-router

86

This output is for two

port: 6001

- host: 0.0.0.0
authenticatePeer: ’no’
role: normal
port: 5001
saslMechanisms: ANONYMQOUS

connector:

- host: routerl
role: inter-router
port: 6000

address:

- prefix: closest
distribution: closest

- prefix: multicast
distribution: multicast

- prefix: unicast
distribution: closest

Qpid-Dispatch Configuration File Template

The template for configuration files for current version of Qpid-Dispatch is generated
by qdrouter-jinja2 tool which is open-source and available at https://github.com/rh-
messaging-qe/qdrouter-jinja2.

Since the template is file with approximately 600 lines, the model template for Qpid-
Dispatch version 1.0.0 is available at https://github.com/rh-messaging-qe/ansible-
gpid-dispatch/blob/master/test/files/templates/qdrouterd-roland.conf.j2.

Topology Generator Source Code

The complete source code of Topology Generator is available at:
e https://github.com/rh-messaging-qe/iqa-topology-generator

e https://pypi.org/project/msg-topgen/#description

87

https://github.com/rh-messaging-qe/qdrouter-jinja2
https://github.com/rh-messaging-qe/qdrouter-jinja2
https://github.com/rh-messaging-qe/ansible-qpid-dispatch/blob/master/test/files/templates/qdrouterd-roland.conf.j2
https://github.com/rh-messaging-qe/ansible-qpid-dispatch/blob/master/test/files/templates/qdrouterd-roland.conf.j2
https://github.com/rh-messaging-qe/iqa-topology-generator
https://pypi.org/project/msg-topgen/#description

D AMQP Inspector Data Sets

The following represents headers for data files with AMQP Inspector collected data. The
data file structure depends on the AMQP Inspector request.

General Info

e Timestamp — timestamp when the data was collected.
e Name—name of the router.

e Version — version of the router.

e LinkRoutes —number of active link routes.

e AutoLinks—number of active auto links.

e Links—number of active links.

e Nodes—number of active neighbour nodes.

e Addresses—number of active addresses.

e Connections—number of active connections.

Memory Info

e Timestamp —timestamp when the data was collected.
e Name—name of the memory space.

e Size—type size.

e Batch —transfer batch size.

e Thread-max — maximum allocated for thread.
e Total —totally allocated memory.

e In-threads —memory held by threads.

e Rebal-in — batches rebalanced to threads.

e Rebal-out — batches rebalanced to global.

e totalFreeToHeap — total free to heap.

e globalFreeListMax —global free list max.

88

RouteLink Info

e Timestamp —timestamp when the data was collected.
e Name —name of the route link.

e LinkDir —intput link or output link.

e OperStatus— current status.

e Identity —identification.

e DeliveryCount — number of delivered messages.

e UndeliveredCount — number of undelivered messages.
e PresettledCount —number of presettled messages.

e UnsettledCount —number of unsettled messages.

¢ ReleasedCount —number of released messages.

e ModifiedCount —number of modified messages.

e AcceptedCount —number of accepted messages.

¢ RejectedCount —number of rejected messages.

e Capacity —route link capacity.

89

E Experimental Evaluation
Additional Data

Throughput

The Qpid-Dispatch need some time to evaluate the messages and send them to the receiver.
In the Figure E.la we can see the histogram of unsettled messages during the singlepoint
throughput test. This charts shows the number off received messages, which are not yet
evaluated. Note, that throughput is around 90,000 messages per second.

The flow-control mechanism mentioned in the Subsection 6.1.1 also affected the unset-
tled message count, which is multiple times higher than in the previous test case depicted
in the Figure E.1a. The unsettled message count is depicted in the Figure E.1b.

Unsettled Messages Unsettled Messages

Unsettled Messages M Unsettled Messages B

00:00 02:00 04:00 06:00 08:00 10:00 12:00 14:00

Relative Time [min]

(a) Single router node. (b) Line topology node.

Figure E.1: Examples of experimental topologies created for basic performance testing and
experiments with Maestro.

Latency

Unsettled messages for the router available in the Figure E.2a. From the Inspector outputs
one can see, that the Broker handled 10,000,000 messages in more than 7 minutes, but the
router handled the same amount of messages much faster approximately in 2 minutes and
20 seconds.

Since the router applies the flow control during this measurement and the rate is setup
to 80 % of maximum, the unsettled message count is here much lower than in the other
cases as it is depicted in the Figure E.2b.

90

Unsettled Messages Unsettled Messages

Unsettled Messages M

Unsettled Messages Hm

led Messages

9.0-10

Amount of Un:

6.010%

3.010%

0.010° .0°
00:00 00:20 00:40 01:00 01:20 01:40 02:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00
Relative Time [min] Relative Time [min]
(a) Single router node. (b) Line topology node.

Figure E.2: Examples of experimental topologies created for basic performance testing and
experiments with Maestro.

Measurement With Redundant Router

Memory Memory

65000
Total Allocated —— | Total Allocated ——
[Held By Threads =1 58500 "Held By Threads =1

L 52000 -

L 45500 [~

39000 -

2500 [~

26000 -
r 19500 -

r [13000 [~]
r 6500 =
0 L

0
00:00 00:30 01:00 01:30 02:00 0230 03:00 03:30 0400 0430 05:00 05:30 06:00 06:30 00:00 00:30 01:00 01:30 0200 0230 03:00 03:30 0400 04:30 05:00 05:30 06:00 06:30

Relative Time [min] Relative Time [min|

(a) Restart (b) 10 seconds shutdown

Used Memory [B]

Memory Memory

65000 65000
Total Allocated —— __ | Total Allocated ——
[Held By Threads C—= 58500 ["Held By Threads C—=1

r 52000 -

L 45500 [~
39000 -
r 2500 [~

3 T 26000 |-

+ = 19500 -

i b o m
I I I I

r 6500 =
0 | | | | | | | | | | | | | 0 L L L L L L L L L
00:00 00:30 01:00 01:30 02:00 0230 03:00 03:30 0400 04:30 05:00 05:30 06:00 06:30 00:00 00:30 01:00 01:30 0200 0230 03:00 03:30 0400 04:30 05:00 05:30 06:00 06:30

Relative Time [min] Relative Time [min|

(c) 60 seconds shutdown (d) 120 seconds shutdown

Figure E.3: Collected data about the memory allocation for the redundant router node
during the Agent actions execution.

91

Unsettled Messages Unsettled Messages

100 150
g0 |- Unsetled Messages, 135 | Unsetled Messages
g st b
7 7
< ot Zost
= =
T 60f T ot
3 s0f 3 sl
5
- 40 60
=
ERES 45+
g
2 wp 30t
0t 15
o 1 1 1 1 1 1 1 o 1
0258 0250 0300 0301 0302 0303 0304 0305 0306 0307 0308 02:55 03:00 03:05 03:10 03:15 03:20
Relative Time [minutes| Relative Time [min]

(a) Restart (b) 10 seconds shutdown

Unsettled Messages Unsettled Messages
800 800
1g0 | Unsettled Messages mmm a0 |- Unsettled Messagos
640 1 ;:’o 640 -
560 - £ 560 -

:
K]
=
ERCUS +
% 400 F
S
2320
Z 200 +
H
S0 +
50+ +
0 0 L
02:30 03:00 03:30 04:00 04:30 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00
Relative Time [min] Relative Time [min]

(c) 60 seconds shutdown (d) 120 seconds shutdown

Figure E.4: Collected data about the unsettled messages for the redundant router node
during the Agent actions execution.

Delivered Messages Delivered Messages
1.2:10° 6.0:10°
Delivered Messages M Delivered Messages M

% 10:10° - 501100
Z 8010 4.010° -
26010 3.0:10°
a
= .
= 4010 20:10° -
g
£ .
< 2010" 1.0:10° -

0.0-10° 0010

02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
Relative Time [min] Relative Time [min]
(a) Restart (b) 10 seconds shutdown
Delivered Messages Delivered Messages
3.010° 6.010°
Delivered Messages M Delivered Messages

z 25100 - z 5.010°
EH 2
7 7
= 20100 Z 10100
E H
g g .
2 15100 2 3.010°
S z
] a
Lo S 20000
g]
g . g
< 50107 < 1010°

0.010° 0.0-10°

02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30 02:30 03:00 03:30 04:00 04:30 05:00 05:30 06:00 06:30
Relative Time [min] Relative Time [min]

(c) 60 seconds shutdown (d) 120 seconds shutdown

Figure E.5: Collected data about the delivered messages for the redundant router node
during the Agent actions execution.

92

	Introduction
	Fundamentals of Software Performance Testing
	Performance Testing Process
	Performance Issues
	Types of Performance Testing
	Performance Metrics
	Throughput
	Response Time and Latency
	Resource Usage
	Error Rate

	Messaging Performance Tool
	Test Case Scenario
	Communication Between Components
	Measuring Process
	Testing Metrics

	Collected Data Format
	Related Works

	Analysis and Design
	Used Technologies
	Ansible
	Docker

	Qpid-Dispatch Router
	Theory of Operation
	Addresses and Connections
	Message Routing

	Automatic Topology Generator
	Topology Components
	Input and Output Format
	Graph Metadata
	Topology Deployment

	Agent Performance Module
	Extension Points
	Communication with Agent
	AMQP Inspector

	Implementation
	Topology Generation
	Configuration File Generation
	Template Generator
	Topology Generator
	Deployment

	Qpid-Dispatch Performance Module
	MPT Preparations
	Agent Module
	AMQP Management Inspector

	Experimental Evaluation
	Basic Performance Measurements
	Throughput
	Latency

	Behavior Measurements
	Agent Demonstration
	Measurement With Redundant Router

	Future works and ideas
	Regression Testing
	Data Reporting
	Collected Data Compression
	Multi-point Senders and Receiver
	Maestro-Agent Executor Improvements
	Multiple Agents and Inspectors

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	List of Appendices
	CD Content
	The Maestro Protocol
	Topology Generator
	AMQP Inspector Data Sets
	Experimental Evaluation Additional Data

